-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-SchurDecomposition.tex
52 lines (46 loc) · 1.84 KB
/
15-00-SchurDecomposition.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SchurDecomposition}
\pmcreated{2013-03-22 13:42:12}
\pmmodified{2013-03-22 13:42:12}
\pmowner{Daume}{40}
\pmmodifier{Daume}{40}
\pmtitle{Schur decomposition}
\pmrecord{8}{34380}
\pmprivacy{1}
\pmauthor{Daume}{40}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmrelated{AnExampleForSchurDecomposition}
\pmrelated{ProofThatDetEAEoperatornametrA}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
If $A$ is a complex square matrix of order n \textit{(i.e. $A\in\mathrm{Mat}_n(\mathbb{C})$)}, then there exists a unitary matrix $Q \in \mathrm{Mat}_n(\mathbb{C})$ such that\\
\begin{center}
$Q^HAQ = T = D + N$
\end{center}
where $^H$ is the conjugate transpose, $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ \textit{(the $\lambda_i$ are eigenvalues of $A$)}, and $N \in \mathrm{Mat}_n(\mathbb{C})$ is strictly upper triangular matrix. Furthermore, $Q$ can be chosen such that the eigenvalues $\lambda_i$ appear in any order along the diagonal. \cite{1}
\begin{thebibliography}{1}
\bibitem[GVL]{1} Golub, H. Gene, Van Loan F. Charles: Matrix Computations \textit{(Third Edition)}. The Johns Hopkins University Press, London, 1996.
\end{thebibliography}
%%%%%
%%%%%
\end{document}