-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-RotationMatrix.tex
124 lines (107 loc) · 3.37 KB
/
15-00-RotationMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{RotationMatrix}
\pmcreated{2013-03-22 15:03:57}
\pmmodified{2013-03-22 15:03:57}
\pmowner{matte}{1858}
\pmmodifier{matte}{1858}
\pmtitle{rotation matrix}
\pmrecord{17}{36786}
\pmprivacy{1}
\pmauthor{matte}{1858}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmsynonym{rotational matrix}{RotationMatrix}
\pmrelated{OrthogonalMatrices}
\pmrelated{ExampleOfRotationMatrix}
\pmrelated{DecompositionOfOrthogonalOperatorsAsRotationsAndReflections}
\pmrelated{DerivationOfRotationMatrixUsingPolarCoordinates}
\pmrelated{DerivationOf2DReflectionMatrix}
\pmrelated{TransitionToSkewAngledCoordinates}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
\usepackage{bbm}
\newcommand{\Z}{\mathbbmss{Z}}
\newcommand{\C}{\mathbbmss{C}}
\newcommand{\R}{\mathbbmss{R}}
\newcommand{\Q}{\mathbbmss{Q}}
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\newtheorem{thm}{Theorem}
\newtheorem{defn}{Definition}
\newtheorem{prop}{Proposition}
\newtheorem{lemma}{Lemma}
\newtheorem{cor}{Corollary}
\begin{document}
\begin{defn} A \emph{rotation matrix} is a
(real) orthogonal matrix whose determinant is $+1$.
All $n\times n$ rotation matrices form a group called
the \emph{specia{l} orthogona{l} grou{p}} and it is denoted by
$\operatorname{SO}(n)$.
\end{defn}
\subsubsection*{Examples}
\begin{enumerate}
\item The identity matrix in $\R^n$ is a rotation matrix.
\item The most general rotation matrix in $\R^2$ can be written as
$$
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix},
$$
where $\theta\in \R$.
Multiplication (from the left) with this matrix
rotates a vector (in $\R^2$) $\theta$ radians in the anti-clockwise
direction.
\end{enumerate}
\subsubsection*{Properties}
\begin{enumerate}
\item Suppose $v\in \R^n$ is a unit vector.
Then there exists a rotation matrix $R$
such that $R\cdot v = (1,0,\ldots, 0)$.
\item
In fact, for $v\in \R^n$, $n\ge 3$, there are many rotation matrices
$\mathbf{R} \in \operatorname{SO}(n)$ such that
$R\cdot v = (1,0,\ldots, 0)^T$.
To see this, let $f$ be the mapping
$f\colon \operatorname{SO}(n-1)\rightarrow \operatorname{SO}(n)$,
defined as
$$
f(Q)=
\begin{pmatrix}
1 & 0_{1\times n-1}\\
0_{n-1\times 1} & Q_{n-1\times n-1}
\end{pmatrix}.
$$
Then for each $Q\in \operatorname{SO}(n-1)$, $f(Q)$
maps $(1,0,\ldots, 0)^T$ onto itself. Thus, if
$R_0 \in \operatorname{SO}(n)$ satisfies $R\cdot v=(1,0,\ldots, 0)^T$,
then $f(Q)\cdot R$ satisfies the same property for all
$Q\in \operatorname{SO}(n-1)$.
\end{enumerate}
%%%%%
%%%%%
\end{document}