-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-OrthogonalMatrices.tex
54 lines (39 loc) · 2.24 KB
/
15-00-OrthogonalMatrices.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{OrthogonalMatrices}
\pmcreated{2013-03-22 12:05:19}
\pmmodified{2013-03-22 12:05:19}
\pmowner{akrowne}{2}
\pmmodifier{akrowne}{2}
\pmtitle{orthogonal matrices}
\pmrecord{11}{31176}
\pmprivacy{1}
\pmauthor{akrowne}{2}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmrelated{OrthogonalPolynomials}
\pmrelated{RotationMatrix}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\newcommand{\trT}{{\mathrm T}}
\begin{document}
\PMlinkescapeword{square}
A real square $n \times n$ matrix $Q$ is orthogonal if $Q^\trT Q = I$, i.e., if $Q^{-1} = Q^\trT$. The rows and columns of an orthogonal matrix form an orthonormal basis.
Orthogonal matrices play a very important role in linear algebra. Inner products are preserved under an orthogonal transform: $(Qx)^\trT Qy=x^\trT Q^\trT Qy=x^\trT y$, and also the Euclidean norm $||Qx||_2 = ||x||_2$. An example of where this is useful is solving the least squares problem $Ax \approx b$ by solving the equivalent problem $Q^\trT Ax \approx Q^\trT b$.
Orthogonal matrices can be thought of as the real case of unitary matrices. A unitary matrix $U \in \mathbb{C}^{n \times n}$ has the property $U^*U = I$, where $U^* = \overline{U^\trT}$ (the conjugate transpose). Since $\overline{Q^\trT} = Q^\trT$ for real $Q$, orthogonal matrices are unitary.
An orthogonal matrix $Q$ has $\det(Q) = \pm 1$.
Important orthogonal matrices are Givens rotations and Householder transformations. They help us maintain numerical stability because they do not amplify rounding errors.
Orthogonal $2 \times 2$ matrices are rotations or reflections if they have the form:
$$ \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} \text{or} \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} $$
respectively.
{\it This entry is based on content from The Data Analysis Briefbook (\PMlinkexternal{http://rkb.home.cern.ch/rkb/titleA.html}{http://rkb.home.cern.ch/rkb/titleA.html})}
\begin{thebibliography}{3}
\bibitem{Friedberg} Friedberg, Insell, Spence. {\it Linear Algebra}. Prentice-Hall Inc., 1997.
\end{thebibliography}
%%%%%
%%%%%
%%%%%
\end{document}