-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-NilpotentTransformation.tex
64 lines (61 loc) · 2.03 KB
/
15-00-NilpotentTransformation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{NilpotentTransformation}
\pmcreated{2013-03-22 12:19:52}
\pmmodified{2013-03-22 12:19:52}
\pmowner{rmilson}{146}
\pmmodifier{rmilson}{146}
\pmtitle{nilpotent transformation}
\pmrecord{7}{31961}
\pmprivacy{1}
\pmauthor{rmilson}{146}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmsynonym{nilpotent}{NilpotentTransformation}
\pmrelated{LinearTransformation}
\endmetadata
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\newtheorem{proposition}{Proposition}
\begin{document}
A linear transformation $N: U\rightarrow U$ is called nilpotent if there exists a $k\in\mathbb{N}$ such that
$$N^k = 0.$$
A nilpotent transformation naturally determines a flag of subspaces
$$ \{0\} \subset \ker N^1 \subset \ker N^2 \subset \ldots \subset \ker N^{k-1} \subset \ker N^k = U$$
and a signature
$$0 = n_0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = \dim U,\qquad n_i =
\dim \ker N^i.$$
The signature is governed by the following constraint, and
characterizes $N$ up to linear isomorphism.
\begin{proposition}
A sequence of increasing natural numbers is the signature of a nil-potent transformation if and only if
$$n_{j+1} - n_{j} \leq n_{j} - n_{j-1}$$
for all $j=1,\ldots,k-1$. Equivalently, there exists a basis of $U$
such that the matrix of $N$ relative to this basis is block diagonal
$$\begin{pmatrix}
N_1 & 0 & 0 & \ldots & 0\\
0 & N_2 & 0 & \ldots & 0 \\
0 & 0 & N_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & N_k
\end{pmatrix},$$
with each of the blocks having the form
$$
N_i = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0
\end{pmatrix}
$$
Letting $d_i$ denote the number of blocks of size $i$, the
signature of $N$ is given by
$$n_i = n_{i-1} + d_i + d_{i+1} + \ldots + d_k,\quad i=1,\ldots,k$$
\end{proposition}
%%%%%
%%%%%
\end{document}