-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-HadamardMatrix.tex
67 lines (53 loc) · 2.37 KB
/
15-00-HadamardMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{HadamardMatrix}
\pmcreated{2013-03-22 13:09:45}
\pmmodified{2013-03-22 13:09:45}
\pmowner{Koro}{127}
\pmmodifier{Koro}{127}
\pmtitle{Hadamard matrix}
\pmrecord{13}{33605}
\pmprivacy{1}
\pmauthor{Koro}{127}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmclassification{msc}{05B20}
\pmsynonym{Hadamard}{HadamardMatrix}
\pmrelated{HadamardConjecture}
\endmetadata
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
\PMlinkescapeword{rows}
\PMlinkescapeword{row}
\PMlinkescapeword{columns}
\PMlinkescapeword{column}
\PMlinkescapeword{contain}
\PMlinkescapeword{property}
\PMlinkescapeword{order}
\PMlinkescapeword{states}
\PMlinkescapeword{satisfies}
\PMlinkescapeword{integer}
An $n\times n$ matrix $H = (h_{ij})$ is a \emph{Hadamard matrix} of order $n$ if the entries of $H$ are either
$+1$ or $-1$ and such that $HH^T = nI,$ where $H^T$ is the transpose of $H$ and $I$ is the order $n$
identity matrix.
In other words, an $n\times n$ matrix with only $+1$ and $-1$ as its elements is Hadamard if the inner product of two distinct rows is
$0$ and the inner product of a row with itself is $n$.
A few examples of Hadamard matrices are
$$\begin{bmatrix} 1 & 1 \\ 1 & -1\end{bmatrix} , \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{bmatrix}$$
These matrices were first considered as Hadamard determinants, because the determinant of a Hadamard matrix satisfies equality in Hadamard's determinant theorem, which states that if $X = (x_{ij})$ is a matrix of order $n$ where $|x_{ij}| \leq 1$ for all $i$ and $j,$ then
$$det(X) \leq n^{n/2}$$
\textbf{Property 1:}
The order of a Hadamard matrix is $1, 2$ or $4n,$ where $n$ is an integer.
\textbf{Property 2:}
If the rows and columns of a Hadamard matrix are permuted, the matrix remains Hadamard.
\textbf{Property 3:}
If any row or column is multiplied by $-1,$ the Hadamard property is retained.
Hence it is always possible to arrange to have the first row and first column of a Hadamard matrix contain
only $+1$ entries. A Hadamard matrix in this form is said to be \emph{normalized}.
Hadamard matrices are common in signal processing and coding applications.
%%%%%
%%%%%
\end{document}