-
Notifications
You must be signed in to change notification settings - Fork 4
/
15-00-ConjugateTranspose.tex
119 lines (101 loc) · 3.79 KB
/
15-00-ConjugateTranspose.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ConjugateTranspose}
\pmcreated{2013-03-22 13:42:18}
\pmmodified{2013-03-22 13:42:18}
\pmowner{Koro}{127}
\pmmodifier{Koro}{127}
\pmtitle{conjugate transpose}
\pmrecord{10}{34382}
\pmprivacy{1}
\pmauthor{Koro}{127}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{15-00}
\pmclassification{msc}{15A15}
\pmsynonym{adjoint matrix}{ConjugateTranspose}
\pmsynonym{Hermitian conjugate}{ConjugateTranspose}
\pmsynonym{tranjugate}{ConjugateTranspose}
\pmrelated{Transpose}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\newcommand{\sR}[0]{\mathbb{R}}
\newcommand{\sC}[0]{\mathbb{C}}
\newcommand{\sN}[0]{\mathbb{N}}
\newcommand{\sZ}[0]{\mathbb{Z}}
% The below lines should work as the command
% \renewcommand{\bibname}{References}
% without creating havoc when rendering an entry in
% the page-image mode.
\makeatletter
\@ifundefined{bibname}{}{\renewcommand{\bibname}{References}}
\makeatother
\newcommand*{\norm}[1]{\lVert #1 \rVert}
\newcommand*{\abs}[1]{| #1 |}
\begin{document}
\def\dtra{\hspace{0.04cm} ^{\mbox{\scriptsize{T}}} \hspace{0.02cm}}
\def\htra{\hspace{0.04cm} ^{\mbox{\scriptsize{H}}} \hspace{0.02cm}}
{\bf Definition} If $A$ is a complex matrix, then the
\emph{conjugate transpose} $A^\ast$ is the matrix
$A^\ast = \bar{A}\dtra$, where $\bar{A}$ is
the complex conjugate of $A$, and $A\dtra$ is the
transpose of $A$.
It is clear that for real matrices, the conjugate transpose coincides with
the transpose.
\subsubsection{Properties}
\begin{enumerate}
\item If $A$ and $B$ are complex matrices of same size, and $\alpha,\beta$
are complex constants, then
\begin{eqnarray*}
(\alpha A + \beta B)^\ast &=& \overline{\alpha} A^\ast + \overline{\beta} B^\ast,\\
A^{\ast\ast} &=& A.
\end{eqnarray*}
\item If $A$ and $B$ are complex matrices such that $AB$ is defined, then
$$ (AB)^\ast = B^\ast A^\ast.$$
\item If $A$ is a complex square matrix, then
\begin{eqnarray*}
\det (A^\ast) &=& \overline{ \det{A}}, \\
\operatorname{trace}(A^\ast) &=& \overline{ \operatorname{trace}{A}}, \\
(A^\ast)^{-1} &=& (A^{-1})^\ast,
\end{eqnarray*}
where $\operatorname{trace}$ and $\operatorname{det}$ are the trace
and the determinant operators, and $^{-1}$ is the inverse operator.
\item Suppose $\langle \cdot, \cdot \rangle$ is the standard inner product on $\sC^n$.
Then for an arbitrary complex $n\times n$ matrix $A$,
and vectors $x,y\in \sC^n$, we have
$$ \langle Ax,y\rangle = \langle x,A^\ast y \rangle.$$
\end{enumerate}
\subsubsection*{Notes}
The conjugate transpose of $A$ is also called the \emph{adjoint matrix} of $A$,
the \emph{Hermitian conjugate} of $A$ (whence one usually writes $A^\ast = A\htra$).
The notation $A^\dagger$ is also used for the conjugate transpose \cite{pease}.
In \cite{eves}, $A^\ast$ is also called the \emph{tranjugate} of $A$.
\begin{thebibliography}{9}
\bibitem {eves} H. Eves, \emph{Elementary Matrix Theory}, Dover publications, 1980.
\bibitem {pease} M. C. Pease,
\emph{Methods of Matrix Algebra}, Academic Press, 1965.
\end{thebibliography}
\subsubsection*{See also}
\begin{itemize}
\item Wikipedia,
\PMlinkexternal{conjugate transpose}{http://www.wikipedia.org/wiki/Conjugate_transpose}
\end{itemize}
%%%%%
%%%%%
\end{document}