-
Notifications
You must be signed in to change notification settings - Fork 12
/
11A05-DivisorFunction.tex
97 lines (73 loc) · 2.6 KB
/
11A05-DivisorFunction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{DivisorFunction}
\pmcreated{2013-11-27 18:13:38}
\pmmodified{2013-11-27 18:13:38}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{divisor function}
\pmrecord{8}{87979}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Theorem}
\pmclassification{msc}{11A05}
\pmclassification{msc}{11A25}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% need this for including graphics (\includegraphics)
\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%\usepackage{xypic}
% used for TeXing text within eps files
%\usepackage{psfrag}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
In the parent article there has been proved the formula
$$
\sigma_1(n) \;=\; \sum_{0 < d \mid n}\!d \;=\;
\prod_{i=1}^k\frac{p_i^{m_i+1}-1}{p_i-1}
$$
giving the sum of all positive divisors of an integer $n$;
there the $p_i$'s are the distinct positive prime factors of $n$ and $m_i$'s their multiplicities.\\
It follows that the sum of the $z$'th powers of those divisors is given by
\begin{align}
\sigma_z(n) \;=\; \sum_{0 < d \mid n}\!d^z \;=\;
\prod_{i=1}^k\frac{p_i^{(m_i+1)z}-1}{p_i^z-1}.
\end{align}
This complex function of $z$ is called
{\it \PMlinkname{divisor function}{DivisorFunction}}.\, The
equation (1) may be written in the form
\begin{align}
\sigma_z(n)\;=\;
\prod_{i=1}^k(1+p_i^z+p_i^{2z}+\ldots+p_i^{m_iz})
\end{align}
usable also for\, $z = 0$.\, For the special case of one prime
power the function consists of the single
\PMlinkname{geometric sum}{GeometricSeries}
$$\sigma_z(p^m) \;=\; 1+p^z+p^{2z}+\ldots+p^{mz},$$
which particularly gives $m\!+\!1$ when $p^z = 1$, i.e. when $z$
is a multiple of $2i\pi/\ln{p}$.
A special case of the function (1) is the
\PMlinkname{$\tau$ function}{TauFunction} of $n$:
$$
\sigma_0(n) \;=\; \sum_{0 < d \mid n}\!1 \;=\;
\prod_{i=1}^k(m_i+1) \;=\; \tau(n)
$$\\
\textbf{Some inequalities}
$$\sigma_m(n)\,\ge\;n^{\frac{m}{2}}\sigma_0(n)
\quad\mbox{for}\quad m = 0,\,1,\,2,\,\ldots$$
$$\sigma_1(mn) > \sigma_1(m)+\sigma_1(n)
\quad \forall\, m, n \in \mathbb{Z}$$
$$\sigma_1(n)\,\le\;\frac{n\!+\!1}{2}\sigma_0(n)$$
$$n\!+\!\sqrt{n} \,< \sigma_1(n) <
\frac{6}{\pi^2}\!\cdot\!n\sqrt{n}$$
\end{document}