-
Notifications
You must be signed in to change notification settings - Fork 12
/
11-00-LeastCommonMultiple.tex
91 lines (81 loc) · 3.52 KB
/
11-00-LeastCommonMultiple.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LeastCommonMultiple}
\pmcreated{2015-05-06 19:07:25}
\pmmodified{2015-05-06 19:07:25}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{least common multiple}
\pmrecord{32}{35723}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{11-00}
\pmsynonym{least common dividend}{LeastCommonMultiple}
\pmsynonym{lcm}{LeastCommonMultiple}
\pmrelated{Divisibility}
\pmrelated{PruferRing}
\pmrelated{SumOfIdeals}
\pmrelated{IdealOfElementsWithFiniteOrder}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
\DeclareMathOperator{\lcm}{lcm}
\begin{document}
If $a$ and $b$ are two positive integers, then their {\it least
common multiple}, denoted by
$$\mathrm{lcm}\!(a,\,b),$$
is the positive
integer $f$ satisfying the conditions
\begin{itemize}
\item $a\mid f$ and $b\mid f$,
\item if $a\mid c$ and $b\mid c$, then $f\mid c$.
\end{itemize}
\textbf{Note:} \, The definition can be generalized for several
numbers. \,The positive {lcm of positive integers is
uniquely determined. (Its negative satisfies the same two
conditions.)
\subsection*{Properties}
\begin{enumerate}
\item If\, $a = \prod_{i=1}^{m}p_i^{\alpha_i}$\, and\,
$b = \prod_{i=1}^{m}p_i^{\beta_i}$\, are the prime factor
\PMlinkescapetext{presentations} of the positive integers $a$ and $b$ ($\alpha_{i} \geqq 0$, \,$\beta_{i} \geqq 0$ \,$\forall i$), then
$$\mathrm{lcm}\!(a,\,b)=
\prod_{i=1}^{m}p_i^{\max\{\alpha_i,\,\beta_i\}}.$$
This can be generalized for lcm of several numbers.
\item Because the greatest common divisor has the expression\,
$\gcd(a,\,b) = \prod_{i=1}^{m}p_i^{\min\{\alpha_i,\,\beta_i\}}$, we see that
$$\gcd(a,\,b)\cdot \mathrm{lcm}\!(a,\,b) = ab.$$
This formula is sensible only for two integers; it can not be
generalized for several numbers, i.e., for example,
$$\gcd(a,\,b,\,c)\cdot \mathrm{lcm}(a,\,b,\,c) \neq abc.$$
\item The preceding formula may be presented in
\PMlinkescapetext{terms} of ideals of $\mathbb{Z}$; we may
replace the integers with the corresponding principal ideals.\,
The formula acquires the form
$$((a)+(b))((a)\cap(b)) = (a)(b).$$
\item The recent formula is valid also for other than principal ideals and even in so general systems as the Pr\"ufer rings; in fact, it could be taken as defining property of these rings: \, Let $R$ be a commutative ring with non-zero unity. \,$R$ is a Pr\"ufer ring iff {\em Jensen's formula}
$$(\mathfrak{a}+\mathfrak{b})(\mathfrak{a}\cap\mathfrak{b}) = \mathfrak{ab}$$
is true for all ideals $\mathfrak{a}$ and $\mathfrak{b}$ of $R$, with at least one of them having \PMlinkname{non-zero-divisors}{ZeroDivisor}.
\end{enumerate}
\begin{thebibliography}{9}
\bibitem{Larsen & McCarthy} M. Larsen and P. McCarthy: {\em Multiplicative theory of ideals}. Academic Press. New York (1971).
\end{thebibliography}
%%%%%
%%%%%
\end{document}