-
Notifications
You must be signed in to change notification settings - Fork 5
/
03B05-CompletenessTheoremForPropositionalLogic1.tex
121 lines (107 loc) · 6.47 KB
/
03B05-CompletenessTheoremForPropositionalLogic1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CompletenessTheoremForPropositionalLogic1}
\pmcreated{2013-03-22 19:32:47}
\pmmodified{2013-03-22 19:32:47}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{completeness theorem for propositional logic}
\pmrecord{21}{42527}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{03B05}
\endmetadata
\usepackage{amssymb,amscd}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%\usepackage{xypic}
\usepackage{pst-plot}
% define commands here
\newcommand*{\abs}[1]{\left\lvert #1\right\rvert}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{ex}{Example}
\newtheorem{lem}{Lemma}
\newcommand{\real}{\mathbb{R}}
\newcommand{\pdiff}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\mpdiff}[3]{\frac{\partial^#1 #2}{\partial #3^#1}}
\begin{document}
The completeness theorem of propositional logic is the statement that a wff is tautology iff it is a theorem. In symbol, we have $$\models A \quad \mbox{iff} \quad \vdash A$$
for any wff $A$. The ``if'' part of the statement is the soundness theorem, and is proved \PMlinkname{here}{TruthValueSemanticsForPropositionalLogicIsSound}. We will prove the ``only if'' part, which is also known as the completeness portion of the theorem. We will give a constructive proof of this. Before proving this, we state and prove some preliminary facts:
\begin{enumerate}
\item $A,B \vdash A\to B$
\item $A,\neg B \vdash \neg (A \to B)$
\item $\neg A,B \vdash A \to B$
\item $\neg A, \neg B \vdash A \to B$
\item Let $v$ be a valuation. For any wff $A$, let $v[A]$ be defined as follows:
\begin{displaymath}
v[A] \textrm{ is } \left\{
\begin{array}{ll}
A & \textrm{if } v(A)=1,\\
\neg A & \textrm{if } v(A)=0.
\end{array}
\right.
\end{displaymath}
Suppose $p_1,\ldots,p_n$ are the propositional variables in $A$. Then $$v[p_1],\ldots, v[p_n]\vdash v[A].$$
\item if $\Delta, A \vdash B$ and $\Delta, \neg A \vdash B$, then $\vdash B$.
\end{enumerate}
\begin{proof}
Facts 1 and 3 come from the axiom schema $B\to (A\to B)$. From $\vdash B\to (A\to B)$, we have $C\vdash B\to (A\to B)$, so $C,B \vdash A\to B$. If $C$ is $A$, we have fact 1, and if $C$ is $\neg A$, we have fact 3.
Fact 2: this is proved \PMlinkname{here}{SubstitutionTheoremForPropositionalLogic}.
Fact 4: By ex falso quodlibet, $\vdash \perp \to B$, so $A\vdash \perp\to B$, and therefore $\vdash A\to (\perp\to B)$ by the deduction theorem. Now, $(A \to (\perp \to B))\to ((A\to \perp)\to (A\to B))$ is an axiom instance, so $\vdash (A\to \perp) \to (A\to B)$, or $\vdash \neg A \to (A\to B)$, or $\neg A \vdash A\to B$, and $$ \neg A, \neg B \vdash A\to B$$ all the more so.
Fact 5: by induction on the number $n$ of occurrences of $\to$ in $A$. If $n=0$, then $A$ is either $\perp$ or a propositional variable $p$. In the first case, $v[A]$ is $\neg \perp$, and from $\perp \vdash \perp$, we get $\vdash \perp \to \perp$, or $\vdash \neg \perp$. In the second case, $v[p]\vdash v[p]$. Now, suppose there are $n+1$ occurrences of $\to$ in $A$. Let $p_1,\ldots, p_m$ be the propositional variables in $A$. By unique readability, $A$ is $B\to C$ for some unique wff's $B$ and $C$. Since each $B$ and $C$ has no more than $n$ occurrences of $\to$, by induction, we have
$$v[p_{i(1)}],\ldots, v[p_{i(s)}] \vdash v[B] \qquad \mbox{and} \qquad v[p_{j(1)}],\ldots, v[p_{j(t)}] \vdash v[C],$$
where the propositional variables in $B$ are $p_{i(1)},\ldots,p_{i(s)}$, and in $C$ are $p_{j(1)},\ldots,p_{j(t)}$. So
$$v[p_1],\ldots, v[p_m] \vdash v[B] \qquad \mbox{and} \qquad v[p_1],\ldots, v[p_m] \vdash v[C].$$
Next, we want to show that $v[B],v[C] \vdash v[B\to C]$. We break this into four cases:
\begin{itemize}
\item if $v[B]$ is $B$ and $v[C]$ is $C$: then $v[B\to C]$ is $B\to C$, and use Fact 1
\item if $v[B]$ is $B$ and $v[C]$ is $\neg C$: then $v[B\to C]$ is $\neg (B\to C)$, and use Fact 2
\item if $v[B]$ is $\neg B$ and $v[C]$ is $C$: then $v[B\to C]$ is $B\to C$, and use Fact 3
\item if $v[B]$ is $\neg B$ and $v[C]$ is $\neg C$: then $v[B\to C]$ is $B\to C$, and use Fact 4.
\end{itemize}
In all cases, we have by applying modus ponens,
$$v[p_1],\ldots, v[p_m] \vdash v[B \to C].$$
Fact 6 is proved \PMlinkname{here}{SubstitutionTheoremForPropositionalLogic}.
\end{proof}
\begin{thm} Propositional logic is complete with respect to truth-value semantics. \end{thm}
\begin{proof} Suppose $A$ is a tautology. Let $p_1,\ldots,p_n$ be the propositional variables in $A$. Then $$ v[p_1],\ldots, v[p_n] \vdash v[A]$$
for any valuation $v$. Since $v[A]$ is $A$. We have
$$v[p_1],\ldots, v[p_n] \vdash A.$$
If $n=0$, then we are done. So suppose $n>0$. Pick a valuation $v$ such that $v(p_n)=1$, and a valuation $v'$ such that $v'(p_i)=v(p_i)$ and $v'(p_n)=0$ Then
$$v[p_1],\ldots, v[p_{n-1}], p_n \vdash A \qquad \mbox{and} \qquad v[p_1],\ldots, v[p_{n-1}], \neg p_n \vdash A,$$
where the first deducibility relation comes from $v$ and the second comes from $v'$. By Fact 6 above,
$$v[p_1],\ldots, v[p_{n-1}] \vdash A.$$
So we have eliminated $v[p_n]$ from the left of $v[p_1],\ldots, v[p_n] \vdash A$. Now, repeat this process until all of the $v[p_i]$ have been eliminated, and we have $\vdash A$.
\end{proof}
The completeness theorem can be used to show that certain complicated wff's are theorems. For example, one of the distributive laws
$$\vdash (A\land B)\lor C \leftrightarrow (A\lor C)\land (B\lor C)$$
To see that this is indeed a theorem, by the completeness theorem, all we need to show is that it is true using the truth table:
\begin{center}
\begin{tabular}{ccccccccccccc}
$(A$ & $\land$ & $B)$ & $\lor$ & $C$ & $\leftrightarrow$ & $(A$ & $\lor$ & $C)$ & $\land$ & $(B$ & $\lor$ & $C)$ \\
\hline
T & T & T & T & T & T & T & T & T & T & T & T & T \\
T & T & T & T & F & T & T & T & F & T & T & T & F \\
T & F & F & T & T & T & T & T & T & T & F & T & T \\
T & F & F & F & F & T & T & T & F & F & F & F & F \\
F & F & T & T & T & T & F & T & T & T & T & T & T \\
F & F & T & F & F & T & F & F & F & F & T & T & F \\
F & F & F & T & T & T & F & T & T & T & F & T & T \\
F & F & F & F & F & T & F & F & F & F & F & F & F
\end{tabular}
\end{center}
Similarly, one can show $\vdash (A\lor B)\land C \leftrightarrow (A\land C)\lor (B\land C)$.
%%%%%
%%%%%
\end{document}