-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo2_autoSmoothRidgeRegress.m
120 lines (98 loc) · 3.49 KB
/
demo2_autoSmoothRidgeRegress.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
% demo2_autoCorrRidgeRegress.m
%
% Demo script to illustrate empirical Bayes (EB) inference for
% linear-Gaussian regression model with "smooth ridge" prior.
%
% This prior corresponds to a Gaussian process prior with an exponential
% covariance function. The tridiagonal inverse covariance matrix is:
%
% C^-1 = alpha/(1-rho^2)[ 1 -rho
% -rho 1 + rho^2 -rho
% ....
% -rho 1+rho^2 -rho
% -rho 1]
%
% The covariance matrix has exponential falloff with shape rho^(-|dt|):
%
% C(dt) = (1/alpha)*rho^(-|dt|) = (1/alpha) exp(dt*log(|dt|)).
%
% Model
% -----
% k ~ N(0,C) % prior on weights
% y | x, k ~ N(x^T k, nsevar) % linear-Gaussian observations
%
% where inverse of the prior covariance C is given above. T
% set path
addpath tools
addpath inference/
%% 1. Make a simulated dataset
nk = 100; % number of regression coefficients in filter
nsamps = 200; % number of samples
signse = 3; % stdev of added noise
% Set up filter
k = zeros(nk,1); % initialize stimulus filter
strtInds = (1:25:nk)'; % indices where filter has discontinuous jumps
% Create filter
for jj = 1:length(strtInds)-1
inds = strtInds(jj):strtInds(jj+1)-1;
k(inds) = gsmooth(randn(length(inds),1),3);
end
inds = strtInds(end):nk;
k(inds) = gsmooth(randn(length(inds),1),3);
% make design matrix
Xdsgn = randn(nsamps,nk);
% simulate outputs
y = Xdsgn*k + randn(nsamps,1)*signse;
%% 2. Compute ML and ridge regression estimates
% Compute sufficient statistics
dd.xx = Xdsgn'*Xdsgn;
dd.xy = Xdsgn'*y;
dd.yy = y'*y;
dd.ny = nsamps;
% maximum-likelihood estimate
kml = dd.xx\dd.xy;
% Compute EB ridge regression estimate
alpha0 = 1; % initial guess at alpha
[kridge,hprs_ridge] = autoRidgeRegress_fixedpoint(dd,alpha0);
%% 3. Compute smooth ridge regression estimates (with or without breaks)
% Automatic smooth-ridge
[ksm1,hprs_sm1,Cinv_sm1] = autoSmoothRidgeRegress(dd);
% Automatic smooth-ridge, with information about breaks
[ksm2,hprs_sm2,Cinv_sm2] = autoSmoothRidgeRegress(dd,strtInds);
%% 4. Display results and make plots
subplot(221);
imagesc(inv(Cinv_sm1)); title('smooth prior cov');
xlabel('coeff #'); ylabel('coeff #');
subplot(222);
imagesc(inv(Cinv_sm2)); title('smooth prior cov w/ breaks');
xlabel('coeff #'); ylabel('coeff #');
subplot(224)
tt = 1:nk;
plot(tt, k,'k--',tt, kridge,tt,ksm1,tt,ksm2);
legend('true k','ridge', 'smooth1', 'smooth2');
xlabel('coeff #')
ylabel('coeff')
fprintf('\nInferred hyperparameters:\n');
fprintf('==========================\n');
fprintf('Ridge:\n')
fprintf('------\n');
fprintf('alpha = %.2f\n',hprs_ridge.alpha);
fprintf('nsevar = %.2f (true = %.2f)\n',hprs_ridge.nsevar, signse^2);
fprintf('\nSmooth-ridge:\n')
fprintf('------------\n');
fprintf('alpha = %.2f\n',hprs_sm1.alpha);
fprintf('nsevar = %.2f (true = %.2f)\n',hprs_sm1.nsevar, signse^2);
fprintf(' rho = %.2f\n',hprs_sm1.rho);
fprintf('\nSmooth-ridge w/ breaks:\n')
fprintf('----------------------\n');
fprintf('alpha = %.2f\n',hprs_sm2.alpha);
fprintf('nsevar = %.2f (true = %.2f)\n',hprs_sm2.nsevar, signse^2);
fprintf(' rho = %.2f\n',hprs_sm2.rho);
% Compare errors
r2fun = @(kest)(1-sum((k-kest).^2)/sum(k.^2));
fprintf('\nPerformance comparison:\n');
fprintf('======================\n');
fprintf(' ML: R2 = %.3f\n', r2fun(kml));
fprintf(' ridge: R2 = %.3f\n', r2fun(kridge));
fprintf(' smooth: R2 = %.3f\n', r2fun(ksm1));
fprintf('w/ breaks: R2 = %.3f\n', r2fun(ksm2));