diff --git a/R/reportEnergyInvestment.R b/R/reportEnergyInvestment.R index e9e0ac1c..5cff9225 100644 --- a/R/reportEnergyInvestment.R +++ b/R/reportEnergyInvestment.R @@ -73,16 +73,28 @@ reportEnergyInvestment <- function(gdx, regionSubsetList = NULL, inv_se <- function(ie, oe, settofilter = pe2se, adjte, v_directteinv, v_adjustteinv, te = pe2se$all_te) { if (!is.character(settofilter)) { if (attr(settofilter, which = "gdxdata")$name %in% c("pe2se", "se2fe", "se2se", "temapall", "en2en")) { - sub1_pe2se <- settofilter[((settofilter$all_enty %in% ie) & (settofilter$all_enty1 %in% oe) & (settofilter$all_te %in% te) & !(settofilter$all_te %in% adjte)), ] - sub2_pe2se <- settofilter[((settofilter$all_enty %in% ie) & (settofilter$all_enty1 %in% oe) & (settofilter$all_te %in% te) & (settofilter$all_te %in% adjte)), ] + + sub1_pe2se <- settofilter[((settofilter$all_enty %in% ie) & + (settofilter$all_enty1 %in% oe) & + (settofilter$all_te %in% te) & + !(settofilter$all_te %in% adjte)), ] + + sub2_pe2se <- settofilter[((settofilter$all_enty %in% ie) & + (settofilter$all_enty1 %in% oe) & + (settofilter$all_te %in% te) & + (settofilter$all_te %in% adjte)), ] + x1 <- dimSums(v_directteinv[, , sub1_pe2se$all_te], dim = 3) * 1000 - x2 <- dimSums(v_directteinv[, , sub2_pe2se$all_te] + v_adjustteinv[, , sub2_pe2se$all_te], dim = 3) * 1000 + + x2 <- dimSums(v_directteinv[, , sub2_pe2se$all_te] + + v_adjustteinv[, , sub2_pe2se$all_te], dim = 3) * 1000 } } else { sub1_pe2se <- settofilter[((settofilter %in% te) & !(settofilter %in% adjte))] - sub2_pe2se <- settofilter[((settofilter %in% te) & (settofilter %in% adjte))] + x1 <- dimSums(v_directteinv[, , sub1_pe2se], dim = 3) * 1000 + x2 <- dimSums(v_directteinv[, , sub2_pe2se] + v_adjustteinv[, , sub2_pe2se], dim = 3) * 1000 } if (is.magpie(x1) && is.magpie(x2)) { diff --git a/R/reportLCOE.R b/R/reportLCOE.R index ac767163..d1d2d1ea 100644 --- a/R/reportLCOE.R +++ b/R/reportLCOE.R @@ -1,21 +1,27 @@ #' Read in GDX and calculate LCOE reporting used in convGDX2MIF_LCOE. #' -#' This function provides a post-processing calculation of LCOE (Levelized Cost of Energy) for energy conversion technologies in REMIND. -#' It includes most technologies that generate secondary energy and the distribution technologies which convert secondary energy to final energy. -#' This script calculates two different types of LCOE: average LCOE (standing system) and marginal LCOE (new plant). -#' The average LCOE reflect the total cost incurred by the technology deployment in a specific time step divided by its energy output. -#' The marginal LCOE estimate the per-unit lifetime cost of the output if the model added another capacity of that technology in the respective time step. -#' The marginal LCOE are calculate in two versions: 1) with fuel prices and co2 taxes of the time step for which the LCOE are calculated (time step prices), -#' or 2) with an intertemporal weighted-average of fuel price and co2 taxes over the lifetime of the plant (intertemporal prices). -#' -#' +#' This function provides a post-processing calculation of LCOE (Levelized Cost +#' of Energy) for energy conversion technologies in REMIND. +#' It includes most technologies that generate secondary energy and the distribution +#' technologies which convert secondary energy to final energy. +#' This script calculates two different types of LCOE: average LCOE (standing system) +#' and marginal LCOE (new plant). +#' The average LCOE reflect the total cost incurred by the technology deployment +#' in a specific time step divided by its energy output. +#' The marginal LCOE estimate the per-unit lifetime cost of the output if the model +#' added another capacity of that technology in the respective time step. +#' The marginal LCOE are calculate in two versions: 1) with fuel prices and co2 +#' taxes of the time step for which the LCOE are calculated (time step prices), +#' or 2) with an intertemporal weighted-average of fuel price and co2 taxes over +#' the lifetime of the plant (intertemporal prices). #' #' @param gdx a GDX object as created by readGDX, or the path to a gdx #' @param output.type string to determine which output shall be produced. #' Can be either "average" (returns only average LCOE), #' "marginal" (returns only marginal LCOE), "both" (returns marginal and average LCOE) and #' and "marginal detail" (returns table to trace back how marginal LCOE are calculated). -#' @return MAgPIE object - LCOE calculated by model post-processing. Two types a) standing system LCOE b) new plant LCOE. +#' @return MAgPIE object - LCOE calculated by model post-processing. +#' Two types a) standing system LCOE b) new plant LCOE. #' @author Felix Schreyer, Robert Pietzcker, Lavinia Baumstark #' @seealso \code{\link{convGDX2MIF_LCOE}} #' @examples @@ -30,1283 +36,1219 @@ #' @importFrom quitte as.quitte overwrite getRegs getPeriods #' @importFrom tidyr spread gather expand fill - - reportLCOE <- function(gdx, output.type = "both") { - # test whether output.type defined - if (!output.type %in% c("marginal", "average", "both", "marginal detail")) { - print("Unknown output type. Please choose either marginal, average, both or marginal detail.") - return(new.magpie(cells_and_regions = "GLO", - years = c(seq(2005, 2060, 5), seq(2070, 2110, 10), 2130, 2150))) - } - - # check whether key variables are there - # LCOE reporting does not make sense for old gdx - # where variables are missing and model structure is different - - vm_capFac <- readGDX(gdx, "vm_capFac", field = "l", restore_zeros = FALSE) - qm_balcapture <- readGDX(gdx, "q_balcapture", field = "m", restore_zeros = FALSE) - vm_co2CCS <- readGDX(gdx, "vm_co2CCS", field = "l", restore_zeros = FALSE) - vm_co2capture <- readGDX(gdx, "vm_co2capture", field = "l", restore_zeros = FALSE) - pm_emifac <- readGDX(gdx, "pm_emiFac", field = "l", restore_zeros = FALSE) - v32_storloss <- readGDX(gdx, "v32_storloss", field = "l") - - if (is.null(vm_capFac) | is.null(qm_balcapture) | is.null(vm_co2CCS) | - is.null(pm_emifac) | is.null(v32_storloss)) { - print("The gdx file is too old for generating a LCOE reporting...returning NULL") - return(new.magpie(cells_and_regions = "GLO", - years = c(seq(2005, 2060, 5), seq(2070, 2110, 10), 2130, 2150))) - } - - - # get module realizations - module2realisation <- readGDX(gdx, "module2realisation") - rownames(module2realisation) <- module2realisation$modules - - - # initialize output array - LCOE.out <- NULL - - - # read in general data (needed for average and marginal LCOE calculation) - s_twa2mwh <- readGDX(gdx, c("sm_TWa_2_MWh", "s_TWa_2_MWh", "s_twa2mwh"), format = "first_found") - s_GtC2tCO2 <- 10^9 * readGDX(gdx, c("sm_c_2_co2", "s_c_2_co2"), format = "first_found") - s_usd2017t2015 <- GDPuc::convertSingle(1, iso3c = "USA", unit_in = "constant 2017 US$MER", unit_out = "constant 2015 US$MER") - - ttot <- as.numeric(readGDX(gdx, "ttot")) - ttot_before2005 <- paste0("y", ttot[which(ttot <= 2000)]) - ttot_from2005 <- paste0("y", ttot[which(ttot >= 2005)]) - te <- readGDX(gdx, "te") - te <- te[!te %in% c("lng_liq", "gas_pipe", "lng_gas", "lng_ves", "coal_ves", "pipe_gas", "termX_lng", "termM_lng", "vess_lng")] - p_priceCO2 <- readGDX(gdx, name = c("p_priceCO2", "pm_priceCO2"), format = "first_found") # co2 price - - - ## equations - qm_pebal <- readGDX(gdx, name = c("q_balPe"), field = "m", format = "first_found") - qm_budget <- readGDX(gdx, name = c("qm_budget"), field = "m", format = "first_found") - - ## variables - vm_prodSe <- readGDX(gdx, name = c("vm_prodSe"), field = "l", restore_zeros = FALSE, format = "first_found") - - - -#### A) Calculation of average (standing system) LCOE ---- - - if (output.type %in% c("both", "average")) { - # read in needed data ---- - - ## sets - opTimeYr <- readGDX(gdx, "opTimeYr") - opTimeYr2te <- readGDX(gdx, "opTimeYr2te") - temapse <- readGDX(gdx, "en2se") - temapall <- readGDX(gdx, c("en2en", "temapall"), format = "first_found") - teall2rlf <- readGDX(gdx, c("te2rlf", "teall2rlf"), format = "first_found") - te2stor <- readGDX(gdx, "VRE2teStor") - te2grid <- readGDX(gdx, "VRE2teGrid") - teVRE <- readGDX(gdx, "teVRE") - # exclude "windoff" from teVRE as "windoff" does not have separate grid, storage technologies - if ("windoff" %in% as.vector(teVRE)) { - teVRE <- as.vector(teVRE) - teVRE <- teVRE[teVRE != "windoff"] - } - - se2fe <- readGDX(gdx, "se2fe") - pe2se <- readGDX(gdx, "pe2se") - teCCS <- readGDX(gdx, "teCCS") - teNoCCS <- readGDX(gdx, "teNoCCS") - techp <- readGDX(gdx, c("teChp", "techp"), format = "first_found") - teReNoBio <- readGDX(gdx, "teReNoBio") - teCDR <- readGDX(gdx, "te_used33") - EW_name <- "weathering" # necessary for backward compatibility - - pc2te <- readGDX(gdx, "pc2te") # mapping of couple production & consumption - - ## parameter - p_omeg <- readGDX(gdx, c("pm_omeg", "p_omeg"), format = "first_found") - p_omeg <- p_omeg[opTimeYr2te] - pm_ts <- readGDX(gdx, "pm_ts") - pm_data <- readGDX(gdx, "pm_data") - pm_emifac <- readGDX(gdx, "pm_emifac", restore_zeros = FALSE) # emission factor per technology - pm_taxemiMkt <- readGDX(gdx, "pm_taxemiMkt") # regional co2 price - pm_eta_conv <- readGDX(gdx, "pm_eta_conv", restore_zeros = FALSE) # efficiency oftechnologies with time-dependent eta - pm_dataeta <- readGDX(gdx, "pm_dataeta", restore_zeros = FALSE) # efficiency of technologies with time-independent eta - p47_taxCO2eq_AggFE <- readGDX(gdx, "p47_taxCO2eq_AggFE", restore_zeros = FALSE, react = "silent") - - pm_prodCouple <- readGDX(gdx, "pm_prodCouple", restore_zeros = FALSE) # Second fuel production or demand per unit output of technology. Negative values mean own consumption, positive values mean coupled product. - pm_PEPrice <- readGDX(gdx, "pm_PEPrice", restore_zeros = FALSE) - pm_SEPrice <- readGDX(gdx, "pm_SEPrice", restore_zeros = FALSE) - - ## variables - vm_costInvTeDir <- readGDX(gdx, name = c("vm_costInvTeDir", "v_costInvTeDir", "v_directteinv"), field = "l", format = "first_found")[, ttot, ] ## Total direct Investment Cost in Timestep - vm_costInvTeAdj <- readGDX(gdx, name = c("vm_costInvTeAdj", "v_costInvTeAdj"), field = "l", format = "first_found")[, ttot, ] ## total adjustment cost in period - vm_capEarlyReti <- readGDX(gdx, name = c("vm_capEarlyReti"), field = "l", format = "first_found")[, ttot, ] - vm_deltaCap <- readGDX(gdx, name = c("vm_deltaCap"), field = "l", format = "first_found")[, ttot, ] - vm_demPe <- readGDX(gdx, name = c("vm_demPe", "v_pedem"), field = "l", restore_zeros = FALSE, format = "first_found") - v_investcost <- readGDX(gdx, name = c("vm_costTeCapital", "v_costTeCapital", "v_investcost"), field = "l", format = "first_found")[, ttot, ] - vm_cap <- readGDX(gdx, name = c("vm_cap"), field = "l", format = "first_found") - vm_prodFe <- readGDX(gdx, name = c("vm_prodFe"), field = "l", restore_zeros = FALSE, format = "first_found") - v_emiTeDetail <- readGDX(gdx, name = c("vm_emiTeDetail", "v_emiTeDetail"), field = "l", restore_zeros = FALSE, format = "first_found") - vm_emiIndCCS <- readGDX(gdx, name = c("vm_emiIndCCS", "v_emiIndCCS"), field = "l", restore_zeros = FALSE, format = "first_found") - vm_emiCdrTeDetail <- readGDX(gdx, c("vm_emiCdrTeDetail", "v33_emi"), field = "l", restore_zeros = FALSE, react = "silent")[, ttot_from2005, teCDR] - if (is.null(vm_emiCdrTeDetail)) { # compatibility with the CDR module before the portfolio was added - # captured CO2 by DAC - v33_emiDAC <- readGDX(gdx, "v33_emiDAC", field = "l", restore_zeros = FALSE, react = "silent")[, ttot_from2005, ] - if (!is.null(v33_emiDAC)) { -teCDR <- c(teCDR, "dac") -} - # captured CO2 by Enhanced Weathering - v33_emiEW <- readGDX(gdx, "v33_emiEW", field = "l", restore_zeros = FALSE, react = "silent") - if (!is.null(v33_emiEW)) { -v33_emiEW <- add_columns(v33_emiEW, addnm = c("y2005", "y2010", "y2015", "y2020"), dim = 2, fill = 0)[, ttot_from2005, ] - EW_name <- intersect(c("rockgrind", "weathering"), te) - teCDR <- c(teCDR, EW_name) -} - # variable used in the rest of the reporting - vm_emiCdrTeDetail <- mbind(v33_emiDAC, v33_emiEW) - vm_emiCdrTeDetail <- setNames(vm_emiCdrTeDetail, c("dac", EW_name)) + # test whether output.type defined + if (!output.type %in% c("marginal", "average", "both", "marginal detail")) { + print("Unknown output type. Please choose either marginal, average, both or marginal detail.") + return(new.magpie(cells_and_regions = "GLO", + years = c(seq(2005, 2060, 5), seq(2070, 2110, 10), 2130, 2150))) } - # module-specific - # amount of curtailed electricity - if (module2realisation["power", 2] == "RLDC") { - v32_curt <- readGDX(gdx, name = c("v32_curt"), field = "l", restore_zeros = FALSE, format = "first_found") - } else if (module2realisation["power", 2] %in% c("IntC", "DTcoup")) { - v32_curt <- v32_storloss[, ttot_from2005, getNames(vm_prodSe, dim = 3)] - } else { - v32_curt <- 0 - } - - # dac FE demand - v33_FEdemand <- readGDX(gdx, name="v33_FEdemand", field="l",restore_zeros=FALSE,format="first_found")[,ttot_from2005,teCDR] - DAC_ccsdemand <- readGDX(gdx, name="v33_co2emi_non_atm_gas", field="l", restore_zeros=FALSE, format="first_found")[, ttot_from2005, "dac"] - v33_emi <- readGDX(gdx, name=c("v33_emi","vm_emiCdrTeDetail"), field="l",restore_zeros=FALSE,format="first_found")[,ttot_from2005,teCDR] - pm_FEPrice <- readGDX(gdx, "pm_FEPrice")[,ttot_from2005,"indst.ETS"] - fe2cdr <- readGDX(gdx, name="fe2cdr") - if(!is.null(fe2cdr)){fe2cdr <- fe2cdr %>% filter(all_te %in% teCDR)} - - discount_rate <- 0.05 - - # calculates annuity cost: - # annuity cost = 1/ sum_t (p_omeg(t) / (1+discount_rate)^t) * direct investment cost - # t is in T which is the lifetime of the technology - # direct investment cost = directteinv or for past values (before 2005) (v_investcost * deltaCap) - # annuity represents (total investment cost + interest over lifetime) distributed equally over all years of lifetime - - # # quick fix for h22ch4 problem - # if (! "h22ch4" %in% magclass::getNames(p_omeg,dim=2)) { - # te <- te[te!="h22ch4"] - # } - - # get a representative region - reg1 <- getRegions(vm_prodSe)[1] - - te_annuity <- new.magpie("GLO", names = magclass::getNames(p_omeg, dim = 2)) - for (a in magclass::getNames(p_omeg[reg1, , ], dim = 2)) { - te_annuity[, , a] <- 1 / dimSums(p_omeg[reg1, , a] / (1 + discount_rate)**as.numeric(magclass::getNames(p_omeg[reg1, , a], dim = 1)), dim = 3.1) - } - - te_inv_annuity <- 1e+12 * te_annuity[, , te] * - mbind( - v_investcost[, ttot_before2005, te] * dimSums(vm_deltaCap[teall2rlf][, ttot_before2005, te], dim = 3.2), - vm_costInvTeDir[, ttot_from2005, te] - ) - - te_inv_annuity_wadj <- 1e+12 * te_annuity[, , te] * - mbind( - v_investcost[, ttot_before2005, te] * dimSums(vm_deltaCap[teall2rlf][, ttot_before2005, te], dim = 3.2), - vm_costInvTeAdj[, ttot_from2005, te] + vm_costInvTeDir[, ttot_from2005, te] - ) - - # average LCOE components ---- - -# calculate sub-parts of "COSTS" -# LCOE calculation only for pe2se technologies so far! - -# 1. sub-part: Investment Cost ---- - - # AnnualInvCost(t) = sum_(td) [annuity(td) * p_pmeg(t-td+1) * deltaT], - # where td in [t-lifetime,t] - - # p_pmeg(t-td+1) = 1 for td = t (measure of how many capacities still standing from past investments) - # p_pmeg(t-td+1) = 0 for td = t-lifetime - - # where t is the year for which the investment cost are calculated and - # td are all past time steps before t back to t-lifetime of the technology - # so: annuity cost incurred over past lifetime years are are divided by current production - # (annuity cost = discounted investment cost spread over lifetime) - - - - # take 74 tech from p_omeg, although in v_direct_in 114 in total - te_annual_inv_cost <- new.magpie(getRegions(te_inv_annuity[, ttot, ]), getYears(te_inv_annuity[, ttot, ]), magclass::getNames(te_inv_annuity[, ttot, ])) - # loop over ttot - for (t0 in ttot) { - for (a in magclass::getNames(te_inv_annuity)) { - # all ttot before t0 - t_id <- ttot[ttot <= t0] - # only the time (t_id) within the opTimeYr of a specific technology a - t_id <- t_id[t_id >= (t0 - max(as.numeric(opTimeYr2te$opTimeYr[opTimeYr2te$all_te == a])) + 1)] - p_omeg_h <- new.magpie(getRegions(p_omeg), years = t_id, names = a) - for (t_id0 in t_id) { - p_omeg_h[, t_id0, a] <- p_omeg[, , a][, , t0 - t_id0 + 1] - } - te_annual_inv_cost[, t0, a] <- dimSums(pm_ts[, t_id, ] * te_inv_annuity[, t_id, a] * p_omeg_h[, t_id, a], dim = 2) - } # a - } # t0 - - te_annual_inv_cost_wadj <- new.magpie(getRegions(te_inv_annuity_wadj[, ttot, ]), getYears(te_inv_annuity_wadj[, ttot, ]), magclass::getNames(te_inv_annuity_wadj[, ttot, ])) - # loop over ttot - for (t0 in ttot) { - for (a in magclass::getNames(te_inv_annuity_wadj)) { - # all ttot before t0 - t_id <- ttot[ttot <= t0] - # only the time (t_id) within the opTimeYr of a specific technology a - t_id <- t_id[t_id >= (t0 - max(as.numeric(opTimeYr2te$opTimeYr[opTimeYr2te$all_te == a])) + 1)] - p_omeg_h <- new.magpie(getRegions(p_omeg), years = t_id, names = a) - for (t_id0 in t_id) { - p_omeg_h[, t_id0, a] <- p_omeg[, , a][, , t0 - t_id0 + 1] - } - te_annual_inv_cost_wadj[, t0, a] <- dimSums(pm_ts[, t_id, ] * te_inv_annuity_wadj[, t_id, a] * p_omeg_h[, t_id, a], dim = 2) - } # a - } # t0 - - # 2. sub-part: fuel cost ---- - - # 2.1 primary fuel cost = PE price * PE demand of technology - - te_annual_fuel_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_fuel_cost[, , pe2se$all_te] <- setNames(1e+12 * qm_pebal[, ttot_from2005, pe2se$all_enty] / qm_budget[, ttot_from2005, ] * - setNames(vm_demPe[, , pe2se$all_te], pe2se$all_enty), pe2se$all_te) - - # 2.2 secondary fuel cost - Fuel.Price <- mbind(pm_PEPrice, pm_SEPrice)[, , ] * 1e12 # convert from trUSD/TWa to USD/TWa [note: this already includes the CO2 price] - Fuel.Price <- magclass::matchDim(Fuel.Price, vm_prodSe, dim = c(1), fill = 0) - - pm_SecFuel <- pm_prodCouple[, , getNames(pm_prodCouple)[pm_prodCouple[reg1, , ] < 0]] # keep only second fuel consumption, not co-production - SecFuelTechs <- intersect(getNames(pm_SecFuel, dim = 3), pc2te$all_te) # determine all te that have couple production - SecFuelTechs_pe2se <- intersect(SecFuelTechs, pe2se$all_te) - otherSecFuelTechs <- setdiff(SecFuelTechs, pe2se$all_te) # note: tdbiogas and tdfosgas are currently not being reported in the average LCOE, and are thus ignored below - - te_annual_secFuel_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) - # calculate secondary fuel cost for pe2se - te_annual_secFuel_cost[, , SecFuelTechs_pe2se] <- setNames(dimSums(-pm_SecFuel[, , SecFuelTechs_pe2se] * Fuel.Price[, ttot_from2005, getNames(pm_SecFuel, dim = 4)] * - vm_prodSe[, ttot_from2005, SecFuelTechs_pe2se], dim = 3.4), SecFuelTechs_pe2se) - # calculate secondary fuel cost for ccsinje - te_annual_secFuel_cost[, , "ccsinje"] <- setNames(-pm_SecFuel[, , "ccsinje"] * Fuel.Price[, , "seel"] * vm_co2CCS[, , "ccsinje.1"], "ccsinje") - # calculation explanation: - # units: -1 (so pm_SecFuel turns positive because consuming energy) - # * electricity or heat demand (pm_SecFuel, TWa_input/TWa_mainOutput OR TWa/GtC) - # * electricity price (Fuel.Price, USD2017/TWa_inpu) - # * main Output (for pe2se: vm_prodSe (TWa_mainOutput); for ccsinje: amount of CO2 captured (vm_co2CCS, GtC)) - # = te_annual_secFuel_cost = [USD2017] - -# 2.3 additional fuel demand of CDR module technologies - te_annual_otherFuel_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) - if (length(teCDR) > 0 & !is.null(v33_FEdemand)) { # i.e. this is only computed for remind post refactoring of cdr module (Nov 2024) - for (te in teCDR) { - te_annual_otherFuel_cost[, ttot_from2005, te] <- setNames(dimSums( - 1e+12 * setNames(pm_FEPrice[, , unique(fe2cdr$all_enty)], unique(fe2cdr$all_enty)) * - setNames(dimSums(v33_FEdemand[, , te], dim = 3.2), unique(getNames(v33_FEdemand[, , te], dim = 1)))), - te) -} + # check whether key variables are there + # LCOE reporting does not make sense for old gdx + # where variables are missing and model structure is different + + vm_capFac <- readGDX(gdx, "vm_capFac", field = "l", restore_zeros = FALSE) + qm_balcapture <- readGDX(gdx, "q_balcapture", field = "m", restore_zeros = FALSE) + vm_co2CCS <- readGDX(gdx, "vm_co2CCS", field = "l", restore_zeros = FALSE) + vm_co2capture <- readGDX(gdx, "vm_co2capture", field = "l", restore_zeros = FALSE) + pm_emifac <- readGDX(gdx, "pm_emiFac", field = "l", restore_zeros = FALSE) + v32_storloss <- readGDX(gdx, "v32_storloss", field = "l") + + if (is.null(vm_capFac) || is.null(qm_balcapture) || is.null(vm_co2CCS) || + is.null(pm_emifac) || is.null(v32_storloss)) { + print("The gdx file is too old for generating a LCOE reporting...returning NULL") + return(new.magpie(cells_and_regions = "GLO", + years = c(seq(2005, 2060, 5), seq(2070, 2110, 10), 2130, 2150))) } - # calculation explanation: 10^12 USD/TrnUSD * pm_FEPrice(TrnUSD/TWa) * FEdemand(TWa) = USD - # 3. sub-part: OMV cost ---- - # omv cost (from pm_data) * SE production + # get module realizations + module2realisation <- readGDX(gdx, "module2realisation") + rownames(module2realisation) <- module2realisation$modules - temapse.names <- apply(temapse, 1, function(x) paste0(x, collapse = ".")) - te_annual_OMV_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_OMV_cost[, , temapse$all_te] <- 1e+12 * collapseNames(pm_data[, , "omv"])[, , temapse$all_te] * setNames(vm_prodSe[, , temapse.names], temapse$all_te) + # initialize output array + LCOE.out <- NULL - # 4. sub-part: OMF cost ---- - # omf cost = omf (from pm_data) * investcost (trUSD/TW) * capacity - # omf in pm_data given as share of investment cost + # read in general data (needed for average and marginal LCOE calculation) + s_twa2mwh <- readGDX(gdx, c("sm_TWa_2_MWh", "s_TWa_2_MWh", "s_twa2mwh"), format = "first_found") + s_GtC2tCO2 <- 10^9 * readGDX(gdx, c("sm_c_2_co2", "s_c_2_co2"), format = "first_found") + s_usd2017t2015 <- GDPuc::convertSingle(1, iso3c = "USA", unit_in = "constant 2017 US$MER", + unit_out = "constant 2015 US$MER") + ttot <- as.numeric(readGDX(gdx, "ttot")) + ttot_before2005 <- paste0("y", ttot[which(ttot <= 2000)]) + ttot_from2005 <- paste0("y", ttot[which(ttot >= 2005)]) + te <- readGDX(gdx, "te") + te <- te[!te %in% c("lng_liq", "gas_pipe", "lng_gas", "lng_ves", "coal_ves", "pipe_gas", "termX_lng", "termM_lng", "vess_lng")] + p_priceCO2 <- readGDX(gdx, name = c("p_priceCO2", "pm_priceCO2"), format = "first_found") # co2 price - te_annual_OMF_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_OMF_cost[, , getNames(te_inv_annuity)] <- 1e+12 * collapseNames(pm_data[, , "omf"])[, , getNames(te_inv_annuity)] * v_investcost[, ttot_from2005, getNames(te_inv_annuity)] * - dimSums(vm_cap[, ttot_from2005, ], dim = 3.2)[, , getNames(te_inv_annuity)] + ## equations + qm_pebal <- readGDX(gdx, name = c("q_balPe"), field = "m", format = "first_found") + qm_budget <- readGDX(gdx, name = c("qm_budget"), field = "m", format = "first_found") - # 5. sub-part: storage cost (for wind, spv, csp) ---- + ## variables + vm_prodSe <- readGDX(gdx, name = c("vm_prodSe"), field = "l", restore_zeros = FALSE, format = "first_found") - # storage cost = investment cost + omf cost - # of corresponding storage technology ("storwind", "storspv", "storcsp") - # clarify: before, they used omv cost here, but storage, grid etc. does not have omv...instead, we use omf now! - te_annual_stor_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_stor_cost[, , te2stor$all_te] <- setNames(te_annual_inv_cost[, ttot_from2005, te2stor$teStor] + - te_annual_OMF_cost[, , te2stor$teStor], te2stor$all_te) - te_annual_stor_cost_wadj <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_stor_cost_wadj[, , te2stor$all_te] <- setNames(te_annual_inv_cost_wadj[, ttot_from2005, te2stor$teStor] + - te_annual_OMF_cost[, , te2stor$teStor], te2stor$all_te) + #### A) Calculation of average (standing system) LCOE ---- + if (output.type %in% c("both", "average")) { + # read in needed data ---- - # 6. sub-part: grid cost ---- + ## sets + opTimeYr <- readGDX(gdx, "opTimeYr") + opTimeYr2te <- readGDX(gdx, "opTimeYr2te") + temapse <- readGDX(gdx, "en2se") + teall2rlf <- readGDX(gdx, c("te2rlf", "teall2rlf"), format = "first_found") + te2stor <- readGDX(gdx, "VRE2teStor") + te2grid <- readGDX(gdx, "VRE2teGrid") + teVRE <- readGDX(gdx, "teVRE") + # exclude "windoff" from teVRE as "windoff" does not have separate grid, storage technologies + if ("windoff" %in% as.vector(teVRE)) { + teVRE <- as.vector(teVRE) + teVRE <- teVRE[teVRE != "windoff"] + } - # same as for storage cost only with grid technologies: "gridwind", "gridspv", "gridcsp" - # only "gridwind" technology active, wind requires 1.5 * the gridwind capacities as spv and csp + se2fe <- readGDX(gdx, "se2fe") + pe2se <- readGDX(gdx, "pe2se") + teCCS <- readGDX(gdx, "teCCS") + teReNoBio <- readGDX(gdx, "teReNoBio") + teCDR <- readGDX(gdx, "te_used33") + EW_name <- "weathering" # necessary for backward compatibility + + pc2te <- readGDX(gdx, "pc2te") # mapping of couple production & consumption + + ## parameter + p_omeg <- readGDX(gdx, c("pm_omeg", "p_omeg"), format = "first_found") + p_omeg <- p_omeg[opTimeYr2te] + pm_ts <- readGDX(gdx, "pm_ts") + pm_data <- readGDX(gdx, "pm_data") + pm_emifac <- readGDX(gdx, "pm_emifac", restore_zeros = FALSE) # emission factor per technology + pm_eta_conv <- readGDX(gdx, "pm_eta_conv", restore_zeros = FALSE) # efficiency oftechnologies with time-dependent eta + pm_dataeta <- readGDX(gdx, "pm_dataeta", restore_zeros = FALSE) # efficiency of technologies with time-independent eta + p47_taxCO2eq_AggFE <- readGDX(gdx, "p47_taxCO2eq_AggFE", restore_zeros = FALSE, react = "silent") + + pm_prodCouple <- readGDX(gdx, "pm_prodCouple", restore_zeros = FALSE) # Second fuel production or demand per unit output of technology. Negative values mean own consumption, positive values mean coupled product. + pm_PEPrice <- readGDX(gdx, "pm_PEPrice", restore_zeros = FALSE) + pm_SEPrice <- readGDX(gdx, "pm_SEPrice", restore_zeros = FALSE) + + ## variables + vm_costInvTeDir <- readGDX(gdx, name = c("vm_costInvTeDir", "v_costInvTeDir", "v_directteinv"), field = "l", format = "first_found")[, ttot, ] ## Total direct Investment Cost in Timestep + vm_costInvTeAdj <- readGDX(gdx, name = c("vm_costInvTeAdj", "v_costInvTeAdj"), field = "l", format = "first_found")[, ttot, ] ## total adjustment cost in period + vm_deltaCap <- readGDX(gdx, name = c("vm_deltaCap"), field = "l", format = "first_found")[, ttot, ] + vm_demPe <- readGDX(gdx, name = c("vm_demPe", "v_pedem"), field = "l", restore_zeros = FALSE, format = "first_found") + v_investcost <- readGDX(gdx, name = c("vm_costTeCapital", "v_costTeCapital", "v_investcost"), field = "l", format = "first_found")[, ttot, ] + vm_cap <- readGDX(gdx, name = c("vm_cap"), field = "l", format = "first_found") + vm_prodFe <- readGDX(gdx, name = c("vm_prodFe"), field = "l", restore_zeros = FALSE, format = "first_found") + v_emiTeDetail <- readGDX(gdx, name = c("vm_emiTeDetail", "v_emiTeDetail"), field = "l", restore_zeros = FALSE, format = "first_found") + vm_emiIndCCS <- readGDX(gdx, name = c("vm_emiIndCCS", "v_emiIndCCS"), field = "l", restore_zeros = FALSE, format = "first_found") + vm_emiCdrTeDetail <- readGDX(gdx, c("vm_emiCdrTeDetail", "v33_emi"), field = "l", restore_zeros = FALSE, react = "silent")[, ttot_from2005, teCDR] + if (is.null(vm_emiCdrTeDetail)) { # compatibility with the CDR module before the portfolio was added + # captured CO2 by DAC + v33_emiDAC <- readGDX(gdx, "v33_emiDAC", field = "l", restore_zeros = FALSE, react = "silent")[, ttot_from2005, ] + if (!is.null(v33_emiDAC)) { + teCDR <- c(teCDR, "dac") + } + # captured CO2 by Enhanced Weathering + v33_emiEW <- readGDX(gdx, "v33_emiEW", field = "l", restore_zeros = FALSE, react = "silent") + if (!is.null(v33_emiEW)) { + v33_emiEW <- add_columns(v33_emiEW, addnm = c("y2005", "y2010", "y2015", "y2020"), dim = 2, fill = 0)[, ttot_from2005, ] + EW_name <- intersect(c("rockgrind", "weathering"), te) + teCDR <- c(teCDR, EW_name) + } + # variable used in the rest of the reporting + vm_emiCdrTeDetail <- mbind(v33_emiDAC, v33_emiEW) + vm_emiCdrTeDetail <- setNames(vm_emiCdrTeDetail, c("dac", EW_name)) + } - grid_factor_tech <- new.magpie(names = te2grid$all_te, fill = 1) - getSets(grid_factor_tech)[3] <- "all_te" - grid_factor_tech[, , "wind"] <- 1.5 - grid_factor_tech[, , "windon"] <- 1.5 - grid_factor_tech[, , "windoff"] <- 3.0 + # module-specific + # amount of curtailed electricity + if (module2realisation["power", 2] == "RLDC") { + v32_curt <- readGDX(gdx, name = c("v32_curt"), field = "l", restore_zeros = FALSE, format = "first_found") + } else if (module2realisation["power", 2] %in% c("IntC", "DTcoup")) { + v32_curt <- v32_storloss[, ttot_from2005, getNames(vm_prodSe, dim = 3)] + } else { + v32_curt <- 0 + } - vm_VRE_prodSe_grid <- dimSums(grid_factor_tech * vm_prodSe[, , te2grid$all_te]) - te_annual_grid_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_grid_cost_wadj <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + # dac FE demand + v33_FEdemand <- readGDX(gdx, name = "v33_FEdemand", field = "l", restore_zeros = FALSE, format = "first_found")[, ttot_from2005, teCDR] + DAC_ccsdemand <- readGDX(gdx, name = "v33_co2emi_non_atm_gas", field = "l", restore_zeros = FALSE, format = "first_found")[, ttot_from2005, "dac"] + pm_FEPrice <- readGDX(gdx, "pm_FEPrice")[, ttot_from2005, "indst.ETS"] + fe2cdr <- readGDX(gdx, name = "fe2cdr") + if (!is.null(fe2cdr)) { + fe2cdr <- fe2cdr %>% filter(.data$all_te %in% teCDR) + } + discount_rate <- 0.05 -gridwindonStr <- ifelse("windon" %in% all_te, "gridwindon", "gridwind") + # calculates annuity cost: + # annuity cost = 1/ sum_t (p_omeg(t) / (1+discount_rate)^t) * direct investment cost + # t is in T which is the lifetime of the technology + # direct investment cost = directteinv or for past values (before 2005) (v_investcost * deltaCap) + # annuity represents (total investment cost + interest over lifetime) distributed equally over all years of lifetime -te_annual_grid_cost[, , te2grid$all_te] <- - collapseNames(te_annual_inv_cost[, ttot_from2005, gridwindonStr] + te_annual_OMF_cost[, , gridwindonStr]) * - 1 / vm_VRE_prodSe_grid * - # this multiplcative factor is added to reflect higher grid demand of wind, see q32_limitCapTeGrid - grid_factor_tech * vm_prodSe[, , te2grid$all_te] + # # quick fix for h22ch4 problem + # if (! "h22ch4" %in% magclass::getNames(p_omeg,dim=2)) { + # te <- te[te!="h22ch4"] + # } -te_annual_grid_cost_wadj[, , te2grid$all_te] <- - collapseNames(te_annual_inv_cost_wadj[, ttot_from2005, gridwindonStr] + te_annual_OMF_cost[, , gridwindonStr]) * - 1 / vm_VRE_prodSe_grid * - # this multiplcative factor is added to reflect higher grid demand of wind, see q32_limitCapTeGrid - grid_factor_tech * vm_prodSe[, , te2grid$all_te] + # get a representative region + reg1 <- getRegions(vm_prodSe)[1] + te_annuity <- new.magpie("GLO", names = magclass::getNames(p_omeg, dim = 2)) + for (a in magclass::getNames(p_omeg[reg1, , ], dim = 2)) { + te_annuity[, , a] <- 1 / dimSums(p_omeg[reg1, , a] / (1 + discount_rate)**as.numeric(magclass::getNames(p_omeg[reg1, , a], dim = 1)), dim = 3.1) + } + te_inv_annuity <- 1e+12 * te_annuity[, , te] * + mbind( + v_investcost[, ttot_before2005, te] * dimSums(vm_deltaCap[teall2rlf][, ttot_before2005, te], dim = 3.2), + vm_costInvTeDir[, ttot_from2005, te] + ) - # 7. sub-part: ccs injection cost (for technologies capturing CO2) ---- + te_inv_annuity_wadj <- 1e+12 * te_annuity[, , te] * + mbind( + v_investcost[, ttot_before2005, te] * dimSums(vm_deltaCap[teall2rlf][, ttot_before2005, te], dim = 3.2), + vm_costInvTeAdj[, ttot_from2005, te] + vm_costInvTeDir[, ttot_from2005, te] + ) - # same as for storage/grid but with ccs inejection technology - # distributed to technolgies according to share of total captured co2 of ccs technology + # average LCOE components ---- - # (annual ccsinje investment + annual ccsinje omf) * captured co2 (tech) / total captured co2 of all tech + # calculate sub-parts of "COSTS" + # LCOE calculation only for pe2se technologies so far! - te_annual_ccsInj_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) - te_annual_ccsInj_inclAdjCost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) + # 1. sub-part: Investment Cost ---- + # AnnualInvCost(t) = sum_(td) [annuity(td) * p_pmeg(t-td+1) * deltaT], + # where td in [t-lifetime,t] - # calculate total ccsinjection cost for all techs - total_ccsInj_cost <- dimReduce(te_annual_inv_cost[getRegions(te_annual_OMF_cost), getYears(te_annual_OMF_cost), "ccsinje"] + - te_annual_OMF_cost[, , "ccsinje"] + te_annual_secFuel_cost[, , "ccsinje"]) + # p_pmeg(t-td+1) = 1 for td = t (measure of how many capacities still standing from past investments) + # p_pmeg(t-td+1) = 0 for td = t-lifetime - total_ccsInj_inclAdjCost <- dimReduce(te_annual_inv_cost_wadj[getRegions(te_annual_OMF_cost), getYears(te_annual_OMF_cost), "ccsinje"] + - te_annual_OMF_cost[, , "ccsinje"] + - te_annual_secFuel_cost[, , "ccsinje"]) - # all captured co2 by tech: pe2se and cdr and industry - cco2_byTech <- mbind(dimSums(v_emiTeDetail[, , "cco2"][, ttot_from2005, teCCS], dim = c(3.1, 3.2, 3.4), na.rm = TRUE), - setNames(DAC_ccsdemand, "dac"), vm_emiIndCCS[, ttot_from2005, ]) - cco2Techs <- intersect(getNames(cco2_byTech), getNames(te_inv_annuity)) + # where t is the year for which the investment cost are calculated and + # td are all past time steps before t back to t-lifetime of the technology + # so: annuity cost incurred over past lifetime years are are divided by current production + # (annuity cost = discounted investment cost spread over lifetime) - # distribute ccs injection cost over techs - te_annual_ccsInj_cost[, , cco2Techs] <- setNames(total_ccsInj_cost * cco2_byTech[, , cco2Techs] / vm_co2capture, - cco2Techs) - te_annual_ccsInj_inclAdjCost[, , cco2Techs] <- setNames(total_ccsInj_inclAdjCost * cco2_byTech[, , cco2Techs] / vm_co2capture, - cco2Techs) + # take 74 tech from p_omeg, although in v_direct_in 114 in total + te_annual_inv_cost <- new.magpie(getRegions(te_inv_annuity[, ttot, ]), getYears(te_inv_annuity[, ttot, ]), magclass::getNames(te_inv_annuity[, ttot, ])) + # loop over ttot + for (t0 in ttot) { + for (a in magclass::getNames(te_inv_annuity)) { + # all ttot before t0 + t_id <- ttot[ttot <= t0] + # only the time (t_id) within the opTimeYr of a specific technology a + t_id <- t_id[t_id >= (t0 - max(as.numeric(opTimeYr2te$opTimeYr[opTimeYr2te$all_te == a])) + 1)] + p_omeg_h <- new.magpie(getRegions(p_omeg), years = t_id, names = a) + for (t_id0 in t_id) { + p_omeg_h[, t_id0, a] <- p_omeg[, , a][, , t0 - t_id0 + 1] + } + te_annual_inv_cost[, t0, a] <- dimSums(pm_ts[, t_id, ] * te_inv_annuity[, t_id, a] * p_omeg_h[, t_id, a], dim = 2) + } # a + } # t0 + + te_annual_inv_cost_wadj <- new.magpie(getRegions(te_inv_annuity_wadj[, ttot, ]), getYears(te_inv_annuity_wadj[, ttot, ]), magclass::getNames(te_inv_annuity_wadj[, ttot, ])) + # loop over ttot + for (t0 in ttot) { + for (a in magclass::getNames(te_inv_annuity_wadj)) { + # all ttot before t0 + t_id <- ttot[ttot <= t0] + # only the time (t_id) within the opTimeYr of a specific technology a + t_id <- t_id[t_id >= (t0 - max(as.numeric(opTimeYr2te$opTimeYr[opTimeYr2te$all_te == a])) + 1)] + p_omeg_h <- new.magpie(getRegions(p_omeg), years = t_id, names = a) + for (t_id0 in t_id) { + p_omeg_h[, t_id0, a] <- p_omeg[, , a][, , t0 - t_id0 + 1] + } + te_annual_inv_cost_wadj[, t0, a] <- dimSums(pm_ts[, t_id, ] * te_inv_annuity_wadj[, t_id, a] * p_omeg_h[, t_id, a], dim = 2) + } # a + } # t0 + # 2. sub-part: fuel cost ---- - # 8. sub-part: co2 cost ---- + # 2.1 primary fuel cost = PE price * PE demand of technology - te_annual_co2_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, - getNames(te_inv_annuity), fill = 0) + te_annual_fuel_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + te_annual_fuel_cost[, , pe2se$all_te] <- setNames(1e+12 * qm_pebal[, ttot_from2005, pe2se$all_enty] / qm_budget[, ttot_from2005, ] * + setNames(vm_demPe[, , pe2se$all_te], pe2se$all_enty), pe2se$all_te) - # global part of the CO2 price - # limit technology names to those existing in both te_inv_annuity and - # v_emiTeDetail - tmp <- intersect(getNames(te_inv_annuity), - getNames(v_emiTeDetail[, , "co2"], dim = 3)) - te_annual_co2_cost[, , tmp] <- setNames( - (p_priceCO2[, getYears(v_emiTeDetail), ] - * dimSums(v_emiTeDetail[, , tmp], dim = c(3.1, 3.2, 3.4), na.rm = TRUE) - * 1e9 # $/tC * GtC/yr * 1e9 t/Gt = $/yr - ), - tmp) - rm(tmp) + # 2.2 secondary fuel cost + Fuel.Price <- mbind(pm_PEPrice, pm_SEPrice)[, , ] * 1e12 # convert from trUSD/TWa to USD/TWa [note: this already includes the CO2 price] + Fuel.Price <- magclass::matchDim(Fuel.Price, vm_prodSe, dim = c(1), fill = 0) - # regional part of the CO2 price (p47_taxCO2eq_AggFE only exits when regipol is run) - if (!is.null(p47_taxCO2eq_AggFE)) { - tmp <- intersect(getNames(te_inv_annuity), - getNames(v_emiTeDetail[, , "co2"], dim = 3)) + pm_SecFuel <- pm_prodCouple[, , getNames(pm_prodCouple)[pm_prodCouple[reg1, , ] < 0]] # keep only second fuel consumption, not co-production + SecFuelTechs <- intersect(getNames(pm_SecFuel, dim = 3), pc2te$all_te) # determine all te that have couple production + SecFuelTechs_pe2se <- intersect(SecFuelTechs, pe2se$all_te) - te_annual_co2_cost[, getYears(p47_taxCO2eq_AggFE), tmp] <- setNames( - (dimSums(p47_taxCO2eq_AggFE, dim = 3, na.rm = TRUE) - * dimSums(v_emiTeDetail[, getYears(p47_taxCO2eq_AggFE), tmp], dim = c(3.1, 3.2, 3.4), na.rm = TRUE) - * 1e9 * 1e3 # T$/tC * GtC/yr * 1e9 t/Gt 1e3$/T$ = $/yr - ), - tmp) + te_annual_secFuel_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) + # calculate secondary fuel cost for pe2se + te_annual_secFuel_cost[, , SecFuelTechs_pe2se] <- setNames(dimSums(-pm_SecFuel[, , SecFuelTechs_pe2se] * Fuel.Price[, ttot_from2005, getNames(pm_SecFuel, dim = 4)] * + vm_prodSe[, ttot_from2005, SecFuelTechs_pe2se], dim = 3.4), SecFuelTechs_pe2se) + # calculate secondary fuel cost for ccsinje + te_annual_secFuel_cost[, , "ccsinje"] <- setNames(-pm_SecFuel[, , "ccsinje"] * Fuel.Price[, , "seel"] * vm_co2CCS[, , "ccsinje.1"], "ccsinje") + # calculation explanation: + # units: -1 (so pm_SecFuel turns positive because consuming energy) + # * electricity or heat demand (pm_SecFuel, TWa_input/TWa_mainOutput OR TWa/GtC) + # * electricity price (Fuel.Price, USD2017/TWa_inpu) + # * main Output (for pe2se: vm_prodSe (TWa_mainOutput); for ccsinje: amount of CO2 captured (vm_co2CCS, GtC)) + # = te_annual_secFuel_cost = [USD2017] + + # 2.3 additional fuel demand of CDR module technologies + te_annual_otherFuel_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) + if (length(teCDR) > 0 && !is.null(v33_FEdemand)) { # i.e. this is only computed for remind post refactoring of cdr module (Nov 2024) + for (te in teCDR) { + te_annual_otherFuel_cost[, ttot_from2005, te] <- setNames(dimSums( + 1e+12 * setNames(pm_FEPrice[, , unique(fe2cdr$all_enty)], unique(fe2cdr$all_enty)) * + setNames(dimSums(v33_FEdemand[, , te], dim = 3.2), unique(getNames(v33_FEdemand[, , te], dim = 1)))), + te) + } + } + # calculation explanation: 10^12 USD/TrnUSD * pm_FEPrice(TrnUSD/TWa) * FEdemand(TWa) = USD - rm(tmp) - } + # 3. sub-part: OMV cost ---- - # 9. sub-part: curtailment cost ---- - # (only relevant for RLDC version!) + # omv cost (from pm_data) * SE production - # note: this step can only be done after all the other parts have already been calcuated! - # curtailment cost = total annual cost / (production * (1-curt_share)) - total annual cost / production - # total annual cost = sum of all previous annual cost - # curt_share = share of curtailed electricity relative to total generated electricity + temapse.names <- apply(temapse, 1, function(x) paste0(x, collapse = ".")) + te_annual_OMV_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + te_annual_OMV_cost[, , temapse$all_te] <- 1e+12 * collapseNames(pm_data[, , "omv"])[, , temapse$all_te] * setNames(vm_prodSe[, , temapse.names], temapse$all_te) - te_curt_cost <- new.magpie(getRegions(te_annual_fuel_cost), getYears(te_annual_fuel_cost), getNames(te_annual_fuel_cost), fill = 0) + # 4. sub-part: OMF cost ---- - # calculate curtailment share of total generation - pe2se.seel <- pe2se[pe2se$all_enty1 == "seel", ] + # omf cost = omf (from pm_data) * investcost (trUSD/TW) * capacity + # omf in pm_data given as share of investment cost - curt_share <- v32_curt[, , teVRE] / vm_prodSe[, , teVRE] - # calculate total annual cost (without curtailment cost) as sum of previous parts (excl. grid and storage cost) - te_annual_total_cost_noCurt <- new.magpie(getRegions(te_annual_fuel_cost), getYears(te_annual_fuel_cost), getNames(te_annual_fuel_cost)) + te_annual_OMF_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) - te_annual_total_cost_noCurt <- te_annual_inv_cost[, getYears(te_annual_fuel_cost), ] + - te_annual_fuel_cost + - te_annual_OMV_cost + - te_annual_OMF_cost + - te_annual_ccsInj_cost + - te_annual_co2_cost + te_annual_OMF_cost[, , getNames(te_inv_annuity)] <- 1e+12 * collapseNames(pm_data[, , "omf"])[, , getNames(te_inv_annuity)] * v_investcost[, ttot_from2005, getNames(te_inv_annuity)] * + dimSums(vm_cap[, ttot_from2005, ], dim = 3.2)[, , getNames(te_inv_annuity)] -###### 10. sub-part: Additional Enhanced Weathering data & calculations - if (EW_name %in% teCDR) { - # read amount of rock spread - v33_EW_onfield <- readGDX(gdx, c("v33_EW_onfield", "v33_grindrock_onfield"), restore_zeros = FALSE, field = "l", format = "first_found")[, ttot_from2005, ] - v33_EW_onfield_sum <- dimSums(v33_EW_onfield, dim = 3) + # 5. sub-part: storage cost (for wind, spv, csp) ---- - # EW-specific fixed OM cost are given by vm_omcosts_cdr. This cumulates a) completely fixed cost for mining, grinding and spreading; and b) fixed transportation cost that depend on the distance grade. - # To allow interpretation of the LC, separate these cost components. - te_annual_addOM_cost <- 10^12 * setNames(readGDX(gdx, "vm_omcosts_cdr", restore_zeros = FALSE, field = "l", format = "first_found"), EW_name) - s33_costs_fix <- readGDX(gdx, "s33_costs_fix") - p33_EW_transport_costs <- readGDX(gdx, c("p33_EW_transport_costs", "p33_transport_costs"), format = "first_found") + # storage cost = investment cost + omf cost + # of corresponding storage technology ("storwind", "storspv", "storcsp") + # clarify: before, they used omv cost here, but storage, grid etc. does not have omv...instead, we use omf now! - EW_fixed_other_cost <- 10^12 * s33_costs_fix * v33_EW_onfield_sum - EW_fixed_transport_cost <- 10^12 * dimSums(p33_EW_transport_costs[, , getNames(v33_EW_onfield)] * v33_EW_onfield) - } + te_annual_stor_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + te_annual_stor_cost[, , te2stor$all_te] <- setNames(te_annual_inv_cost[, ttot_from2005, te2stor$teStor] + + te_annual_OMF_cost[, , te2stor$teStor], te2stor$all_te) + + te_annual_stor_cost_wadj <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + te_annual_stor_cost_wadj[, , te2stor$all_te] <- setNames(te_annual_inv_cost_wadj[, ttot_from2005, te2stor$teStor] + + te_annual_OMF_cost[, , te2stor$teStor], te2stor$all_te) + + + # 6. sub-part: grid cost ---- + + # same as for storage cost only with grid technologies: "gridwind", "gridspv", "gridcsp" + # only "gridwind" technology active, wind requires 1.5 * the gridwind capacities as spv and csp + + grid_factor_tech <- new.magpie(names = te2grid$all_te, fill = 1) + getSets(grid_factor_tech)[3] <- "all_te" + grid_factor_tech[, , "wind"] <- 1.5 + grid_factor_tech[, , "windon"] <- 1.5 + grid_factor_tech[, , "windoff"] <- 3.0 + + vm_VRE_prodSe_grid <- dimSums(grid_factor_tech * vm_prodSe[, , te2grid$all_te]) + te_annual_grid_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + te_annual_grid_cost_wadj <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, magclass::getNames(te_inv_annuity), fill = 0) + + + gridwindonStr <- ifelse("windon" %in% all_te, "gridwindon", "gridwind") + + te_annual_grid_cost[, , te2grid$all_te] <- + collapseNames(te_annual_inv_cost[, ttot_from2005, gridwindonStr] + te_annual_OMF_cost[, , gridwindonStr]) * + 1 / vm_VRE_prodSe_grid * + # this multiplcative factor is added to reflect higher grid demand of wind, see q32_limitCapTeGrid + grid_factor_tech * vm_prodSe[, , te2grid$all_te] + + te_annual_grid_cost_wadj[, , te2grid$all_te] <- + collapseNames(te_annual_inv_cost_wadj[, ttot_from2005, gridwindonStr] + te_annual_OMF_cost[, , gridwindonStr]) * + 1 / vm_VRE_prodSe_grid * + # this multiplcative factor is added to reflect higher grid demand of wind, see q32_limitCapTeGrid + grid_factor_tech * vm_prodSe[, , te2grid$all_te] -####### 11. sub-part: calculate total energy production and carbon storage ################################# - # a) production volumes to divide by: - # for LCO-ccsinje: change unit of stored CO2 from GtC to tCO2 - vm_co2CCS_tCO2 <- vm_co2CCS * s_GtC2tCO2 + # 7. sub-part: ccs injection cost (for technologies capturing CO2) ---- - # for LCO-cc: calculate captured CO2 to calculate cost per tCO2 - cco2_byTech_tCO2 <- cco2_byTech * s_GtC2tCO2 - cco2_byTech_tCO2[cco2_byTech_tCO2 < 1000] <- NA # set to NA if very small (<1000tCO2/yr) to avoid very large cost parts & weird plots + # same as for storage/grid but with ccs inejection technology + # distributed to technolgies according to share of total captured co2 of ccs technology - te_cco2 <- intersect(getNames(cco2_byTech_tCO2), getNames(te_inv_annuity)) # Technologies that capture co2 to enter ccus system, no matter which source + # (annual ccsinje investment + annual ccsinje omf) * captured co2 (tech) / total captured co2 of all tech + + te_annual_ccsInj_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) + te_annual_ccsInj_inclAdjCost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, getNames(te_inv_annuity), fill = 0) + + + # calculate total ccsinjection cost for all techs + total_ccsInj_cost <- dimReduce(te_annual_inv_cost[getRegions(te_annual_OMF_cost), getYears(te_annual_OMF_cost), "ccsinje"] + + te_annual_OMF_cost[, , "ccsinje"] + te_annual_secFuel_cost[, , "ccsinje"]) + + total_ccsInj_inclAdjCost <- dimReduce(te_annual_inv_cost_wadj[getRegions(te_annual_OMF_cost), getYears(te_annual_OMF_cost), "ccsinje"] + + te_annual_OMF_cost[, , "ccsinje"] + + te_annual_secFuel_cost[, , "ccsinje"]) + # all captured co2 by tech: pe2se and cdr and industry + cco2_byTech <- mbind(dimSums(v_emiTeDetail[, , "cco2"][, ttot_from2005, teCCS], dim = c(3.1, 3.2, 3.4), na.rm = TRUE), + setNames(DAC_ccsdemand, "dac"), vm_emiIndCCS[, ttot_from2005, ]) + cco2Techs <- intersect(getNames(cco2_byTech), getNames(te_inv_annuity)) + + + # distribute ccs injection cost over techs + te_annual_ccsInj_cost[, , cco2Techs] <- setNames(total_ccsInj_cost * cco2_byTech[, , cco2Techs] / vm_co2capture, + cco2Techs) + te_annual_ccsInj_inclAdjCost[, , cco2Techs] <- setNames(total_ccsInj_inclAdjCost * cco2_byTech[, , cco2Techs] / vm_co2capture, + cco2Techs) + + + + # 8. sub-part: co2 cost ---- + + te_annual_co2_cost <- new.magpie(getRegions(te_inv_annuity), ttot_from2005, + getNames(te_inv_annuity), fill = 0) + + # global part of the CO2 price + # limit technology names to those existing in both te_inv_annuity and + # v_emiTeDetail + tmp <- intersect(getNames(te_inv_annuity), + getNames(v_emiTeDetail[, , "co2"], dim = 3)) + te_annual_co2_cost[, , tmp] <- setNames( + (p_priceCO2[, getYears(v_emiTeDetail), ] + * dimSums(v_emiTeDetail[, , tmp], dim = c(3.1, 3.2, 3.4), na.rm = TRUE) + * 1e9 # $/tC * GtC/yr * 1e9 t/Gt = $/yr + ), + tmp) + rm(tmp) + + # regional part of the CO2 price (p47_taxCO2eq_AggFE only exits when regipol is run) + if (!is.null(p47_taxCO2eq_AggFE)) { + tmp <- intersect(getNames(te_inv_annuity), + getNames(v_emiTeDetail[, , "co2"], dim = 3)) + + te_annual_co2_cost[, getYears(p47_taxCO2eq_AggFE), tmp] <- setNames( + (dimSums(p47_taxCO2eq_AggFE, dim = 3, na.rm = TRUE) + * dimSums(v_emiTeDetail[, getYears(p47_taxCO2eq_AggFE), tmp], dim = c(3.1, 3.2, 3.4), na.rm = TRUE) + * 1e9 * 1e3 # T$/tC * GtC/yr * 1e9 t/Gt 1e3$/T$ = $/yr + ), + tmp) + + rm(tmp) + } - # for LCO-sc: calculate stored CO2 to calculate cost per tCO2 - cdrco2_byTech_tCO2 <- vm_emiCdrTeDetail[, , setdiff(teCDR, te_cco2)] * s_GtC2tCO2 * -1 # will become relevant when biochar included + # 9. sub-part: curtailment cost ---- + # (only relevant for RLDC version!) - # enhanced weathering: - if (EW_name %in% teCDR) { + # note: this step can only be done after all the other parts have already been calcuated! + + # curtailment cost = total annual cost / (production * (1-curt_share)) - total annual cost / production + # total annual cost = sum of all previous annual cost + # curt_share = share of curtailed electricity relative to total generated electricity + + te_curt_cost <- new.magpie(getRegions(te_annual_fuel_cost), getYears(te_annual_fuel_cost), getNames(te_annual_fuel_cost), fill = 0) + + # calculate curtailment share of total generation + curt_share <- v32_curt[, , teVRE] / vm_prodSe[, , teVRE] + + # calculate total annual cost (without curtailment cost) as sum of previous parts (excl. grid and storage cost) + te_annual_total_cost_noCurt <- new.magpie(getRegions(te_annual_fuel_cost), getYears(te_annual_fuel_cost), getNames(te_annual_fuel_cost)) + + te_annual_total_cost_noCurt <- te_annual_inv_cost[, getYears(te_annual_fuel_cost), ] + + te_annual_fuel_cost + + te_annual_OMV_cost + + te_annual_OMF_cost + + te_annual_ccsInj_cost + + te_annual_co2_cost + + ###### 10. sub-part: Additional Enhanced Weathering data & calculations + if (EW_name %in% teCDR) { + # read amount of rock spread + v33_EW_onfield <- readGDX(gdx, c("v33_EW_onfield", "v33_grindrock_onfield"), restore_zeros = FALSE, field = "l", format = "first_found")[, ttot_from2005, ] + v33_EW_onfield_sum <- dimSums(v33_EW_onfield, dim = 3) + + # EW-specific fixed OM cost are given by vm_omcosts_cdr. This cumulates a) completely fixed cost for mining, grinding and spreading; and b) fixed transportation cost that depend on the distance grade. + # To allow interpretation of the LC, separate these cost components. + s33_costs_fix <- readGDX(gdx, "s33_costs_fix") + p33_EW_transport_costs <- readGDX(gdx, c("p33_EW_transport_costs", "p33_transport_costs"), format = "first_found") + + EW_fixed_other_cost <- 10^12 * s33_costs_fix * v33_EW_onfield_sum + EW_fixed_transport_cost <- 10^12 * dimSums(p33_EW_transport_costs[, , getNames(v33_EW_onfield)] * v33_EW_onfield) + } + + ####### 11. sub-part: calculate total energy production and carbon storage ################################# + # a) production volumes to divide by: + # for LCO-ccsinje: change unit of stored CO2 from GtC to tCO2 + vm_co2CCS_tCO2 <- vm_co2CCS * s_GtC2tCO2 + + # for LCO-cc: calculate captured CO2 to calculate cost per tCO2 + cco2_byTech_tCO2 <- cco2_byTech * s_GtC2tCO2 + cco2_byTech_tCO2[cco2_byTech_tCO2 < 1000] <- NA # set to NA if very small (<1000tCO2/yr) to avoid very large cost parts & weird plots + + te_cco2 <- intersect(getNames(cco2_byTech_tCO2), getNames(te_inv_annuity)) # Technologies that capture co2 to enter ccus system, no matter which source + + # for LCO-sc: calculate stored CO2 to calculate cost per tCO2 + cdrco2_byTech_tCO2 <- vm_emiCdrTeDetail[, , setdiff(teCDR, te_cco2)] * s_GtC2tCO2 * -1 # will become relevant when biochar included + + # enhanced weathering: + if (EW_name %in% teCDR) { # The calculation of cost is associated with the spreading of rocks in a time step. However, the removal induced thereby is spread across time steps. # Thus, we need to calculate the total removal induced through spreading a given amount of rock as reference value for the cost incurred in that time step. s33_co2_rem_pot <- readGDX(gdx, "s33_co2_rem_pot") EW_induced_in_tCO2 <- dimSums(v33_EW_onfield * s33_co2_rem_pot * s_GtC2tCO2, dim = 3) # here grades do not matter because the overall removal depends on the type of stone and not grade - # [Gt stone] * [GtC/GtStone] * [tCO2/GtC] + # [Gt stone] * [GtC/GtStone] * [tCO2/GtC] EW_induced_in_tCO2[EW_induced_in_tCO2 == 0] <- NA # set NA to avoid infinite investment cost for the standing system when regions do not spread EW in time steps after initial investment was taken cdrco2_byTech_tCO2[, , EW_name] <- EW_induced_in_tCO2[, ttot_from2005, ] # Note that there is an alternative way to allocate the cost which may be added in the future. - } + } - te_sco2 <- getNames(cdrco2_byTech_tCO2) - - # for pe2se: SE and FE production in MWh - total_te_energy <- new.magpie(getRegions(vm_prodSe), getYears(vm_prodSe), - c(magclass::getNames(collapseNames(vm_prodSe[temapse], collapsedim = c(1, 2))), - magclass::getNames(collapseNames(vm_prodFe[se2fe], collapsedim = c(1, 2))))) - total_te_energy[, , temapse$all_te] <- s_twa2mwh * setNames(vm_prodSe[, , temapse.names], temapse$all_te) - total_te_energy[, , se2fe$all_te] <- s_twa2mwh * vm_prodFe[, , se2fe$all_te] - - # set total energy to NA if it is very small (< 100 MWh/yr), - # this avoids very large or infinite cost parts and weird plots - total_te_energy[total_te_energy < 100] <- NA - - # b) calculate curtailment cost & total energy production after curtailment - te_curt_cost[, , teVRE] <- te_annual_total_cost_noCurt[, , teVRE] / (total_te_energy[, , teVRE] * (1 - curt_share[, , teVRE])) - - te_annual_total_cost_noCurt[, , teVRE] / total_te_energy[, , teVRE] - - # calculate total energy production after curtailment - total_te_energy_usable <- total_te_energy - total_te_energy_usable[, , teVRE] <- total_te_energy[, , teVRE] - v32_storloss[, ttot_from2005, teVRE] * s_twa2mwh - - - - #################################################### - ######### calculate average LCOE ################## - #################################################### - LCOE.avg <- NULL - -# calculate standing system LCOE -# - for pe2se: divide total cost of standing system in that time step by total generation (before curtailment) in that time step -# exception: grid and storage cost are calculated by dividing by generation after curtailment -# - carbon transport & storage: cost are calculated by dividing by tons of CO2 that are stored -# - technologies capturing carbon: total cost are divided by tons of CO2 captured. -# Adding cost for stored carbon, this yields full CCS or CDR cost (depending on source of C) -# convert from USD2017/MWh (or tCO2) to USD2015/MWh (or tCO2) - - - LCOE.avg <- mbind( - #### Energy technologies (pe2se$all_te) - ### production cost components - setNames(te_annual_inv_cost[, ttot_from2005, pe2se$all_te] / - total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Investment Cost")), - setNames(te_annual_inv_cost_wadj[, ttot_from2005, pe2se$all_te] / - total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Investment Cost w/ Adj Cost")), - setNames(te_annual_fuel_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Fuel Cost")), - setNames(te_annual_secFuel_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Second Fuel Cost")), - setNames(te_annual_OMF_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|OMF Cost")), - setNames(te_annual_OMV_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|OMV Cost")), - ### calculate VRE grid and storage cost by dividing by usable generation (after generation) - setNames(te_annual_stor_cost[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Storage Cost")), - setNames(te_annual_grid_cost[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Grid Cost")), - ### calculate VRE grid and storage cost (with adjustment costs) by dividing by usable generation (after generation) - setNames(te_annual_stor_cost_wadj[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Storage Cost w/ Adj Cost")), - setNames(te_annual_grid_cost_wadj[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Grid Cost w/ Adj Cost")), - ### add cost for carbon storage and for carbon emissions - setNames(te_annual_ccsInj_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|CCS Cost")), - setNames(te_annual_ccsInj_inclAdjCost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|CCS Cost w/ Adj Cost")), - setNames(te_annual_co2_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|CO2 Cost")), - ### add curtailment cost - setNames(te_curt_cost[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Curtailment Cost")), - ### Total Cost - setNames((te_annual_inv_cost[, ttot_from2005, pe2se$all_te] + te_annual_fuel_cost[, , pe2se$all_te] + te_annual_secFuel_cost[, , pe2se$all_te] + te_annual_OMF_cost[, , pe2se$all_te] + - te_annual_OMV_cost[, , pe2se$all_te] + te_annual_ccsInj_cost[, , pe2se$all_te] + te_annual_co2_cost[, , pe2se$all_te]) / total_te_energy[, , pe2se$all_te] + + te_sco2 <- getNames(cdrco2_byTech_tCO2) + + # for pe2se: SE and FE production in MWh + total_te_energy <- new.magpie(getRegions(vm_prodSe), getYears(vm_prodSe), + c(magclass::getNames(collapseNames(vm_prodSe[temapse], collapsedim = c(1, 2))), + magclass::getNames(collapseNames(vm_prodFe[se2fe], collapsedim = c(1, 2))))) + total_te_energy[, , temapse$all_te] <- s_twa2mwh * setNames(vm_prodSe[, , temapse.names], temapse$all_te) + total_te_energy[, , se2fe$all_te] <- s_twa2mwh * vm_prodFe[, , se2fe$all_te] + + # set total energy to NA if it is very small (< 100 MWh/yr), + # this avoids very large or infinite cost parts and weird plots + total_te_energy[total_te_energy < 100] <- NA + + # b) calculate curtailment cost & total energy production after curtailment + te_curt_cost[, , teVRE] <- te_annual_total_cost_noCurt[, , teVRE] / (total_te_energy[, , teVRE] * (1 - curt_share[, , teVRE])) - + te_annual_total_cost_noCurt[, , teVRE] / total_te_energy[, , teVRE] + + # calculate total energy production after curtailment + total_te_energy_usable <- total_te_energy + total_te_energy_usable[, , teVRE] <- total_te_energy[, , teVRE] - v32_storloss[, ttot_from2005, teVRE] * s_twa2mwh + + + + #################################################### + ######### calculate average LCOE ################## + #################################################### + LCOE.avg <- NULL + + # calculate standing system LCOE + # - for pe2se: divide total cost of standing system in that time step by total generation (before curtailment) in that time step + # exception: grid and storage cost are calculated by dividing by generation after curtailment + # - carbon transport & storage: cost are calculated by dividing by tons of CO2 that are stored + # - technologies capturing carbon: total cost are divided by tons of CO2 captured. + # Adding cost for stored carbon, this yields full CCS or CDR cost (depending on source of C) + # convert from USD2017/MWh (or tCO2) to USD2015/MWh (or tCO2) + + + LCOE.avg <- mbind( + #### Energy technologies (pe2se$all_te) + ### production cost components + setNames(te_annual_inv_cost[, ttot_from2005, pe2se$all_te] / + total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Investment Cost")), + setNames(te_annual_inv_cost_wadj[, ttot_from2005, pe2se$all_te] / + total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Investment Cost w/ Adj Cost")), + setNames(te_annual_fuel_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Fuel Cost")), + setNames(te_annual_secFuel_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Second Fuel Cost")), + setNames(te_annual_OMF_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|OMF Cost")), + setNames(te_annual_OMV_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|OMV Cost")), + ### calculate VRE grid and storage cost by dividing by usable generation (after generation) + setNames(te_annual_stor_cost[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Storage Cost")), + setNames(te_annual_grid_cost[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Grid Cost")), + ### calculate VRE grid and storage cost (with adjustment costs) by dividing by usable generation (after generation) + setNames(te_annual_stor_cost_wadj[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Storage Cost w/ Adj Cost")), + setNames(te_annual_grid_cost_wadj[, , pe2se$all_te] / total_te_energy_usable[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Grid Cost w/ Adj Cost")), + ### add cost for carbon storage and for carbon emissions + setNames(te_annual_ccsInj_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|CCS Cost")), + setNames(te_annual_ccsInj_inclAdjCost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|CCS Cost w/ Adj Cost")), + setNames(te_annual_co2_cost[, , pe2se$all_te] / total_te_energy[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|CO2 Cost")), + ### add curtailment cost + setNames(te_curt_cost[, , pe2se$all_te], + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Curtailment Cost")), + ### Total Cost + setNames((te_annual_inv_cost[, ttot_from2005, pe2se$all_te] + te_annual_fuel_cost[, , pe2se$all_te] + te_annual_secFuel_cost[, , pe2se$all_te] + te_annual_OMF_cost[, , pe2se$all_te] + + te_annual_OMV_cost[, , pe2se$all_te] + te_annual_ccsInj_cost[, , pe2se$all_te] + te_annual_co2_cost[, , pe2se$all_te]) / total_te_energy[, , pe2se$all_te] + (te_annual_stor_cost[, , pe2se$all_te] + te_annual_grid_cost[, , pe2se$all_te]) / total_te_energy_usable[, , pe2se$all_te] + te_curt_cost[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Total Cost")), - setNames((te_annual_inv_cost_wadj[, ttot_from2005, pe2se$all_te] + te_annual_fuel_cost[, , pe2se$all_te] + te_annual_secFuel_cost[, , pe2se$all_te] + te_annual_OMF_cost[, , pe2se$all_te] + - te_annual_OMV_cost[, , pe2se$all_te] + te_annual_ccsInj_inclAdjCost[, , pe2se$all_te] + te_annual_co2_cost[, , pe2se$all_te]) / total_te_energy[, , pe2se$all_te] + + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Total Cost")), + setNames((te_annual_inv_cost_wadj[, ttot_from2005, pe2se$all_te] + te_annual_fuel_cost[, , pe2se$all_te] + te_annual_secFuel_cost[, , pe2se$all_te] + te_annual_OMF_cost[, , pe2se$all_te] + + te_annual_OMV_cost[, , pe2se$all_te] + te_annual_ccsInj_inclAdjCost[, , pe2se$all_te] + te_annual_co2_cost[, , pe2se$all_te]) / total_te_energy[, , pe2se$all_te] + (te_annual_stor_cost_wadj[, , pe2se$all_te] + te_annual_grid_cost_wadj[, , pe2se$all_te]) / total_te_energy_usable[, , pe2se$all_te] + te_curt_cost[, , pe2se$all_te], - paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Total Cost w/ Adj Cost")), - #### Carbon Transport and storage ("ccsinje") - setNames(te_annual_inv_cost[, ttot_from2005, "ccsinje"] / - vm_co2CCS_tCO2[, , "ccsinje.1"], - paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Investment Cost")), - setNames(te_annual_inv_cost_wadj[, ttot_from2005, "ccsinje"] / - vm_co2CCS_tCO2[, , "ccsinje.1"], - paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Investment Cost w/ Adj Cost")), - setNames(te_annual_OMF_cost[, , "ccsinje"] / vm_co2CCS_tCO2[, , "ccsinje.1"], - paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|OMF Cost")), - setNames(te_annual_secFuel_cost[, , "ccsinje"] / vm_co2CCS_tCO2[, , "ccsinje.1"], - paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Second Fuel Cost")), - setNames((te_annual_inv_cost[, ttot_from2005, "ccsinje"] + te_annual_OMF_cost[, , "ccsinje"] + te_annual_secFuel_cost[, , "ccsinje"]) / vm_co2CCS_tCO2[, , "ccsinje.1"], - paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Total Cost")), - setNames((te_annual_inv_cost_wadj[, ttot_from2005, "ccsinje"] + te_annual_OMF_cost[, , "ccsinje"] + te_annual_secFuel_cost[, , "ccsinje"]) / vm_co2CCS_tCO2[, , "ccsinje.1"], - paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Total Cost w/ Adj Cost")), - #### Carbon Management Technologies - ### main cost - setNames(te_annual_inv_cost[, ttot_from2005, te_cco2] / - cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Investment Cost")), - setNames(te_annual_inv_cost_wadj[, ttot_from2005, te_cco2] / - cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Investment Cost w/ Adj Cost")), - setNames(te_annual_fuel_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Fuel Cost")), - setNames(te_annual_secFuel_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Second Fuel Cost")), - setNames(te_annual_otherFuel_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Other Fuel Cost")), - setNames(te_annual_OMF_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|OMF Cost")), - setNames(te_annual_OMV_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|OMV Cost")), - ### cost of storage / amount of the total captured that is stored - setNames(te_annual_ccsInj_cost[, ttot_from2005, cco2Techs] / - (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), - paste0("LCOCC|average|", "ico2|", cco2Techs, "|carbon management", "|CCS Cost")), - setNames(te_annual_ccsInj_inclAdjCost[, ttot_from2005, cco2Techs] / - (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), - paste0("LCOCC|average|", "ico2|", cco2Techs, "|carbon management", "|CCS Cost w/ Adj Cost")), - ### total cost for capturing co2 - setNames((te_annual_inv_cost[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + - te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Total Cost")), - setNames((te_annual_inv_cost_wadj[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + - te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2], - paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Total Cost w/ Adj Cost")), - ### total cost for injecting co2. - setNames((te_annual_inv_cost[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + - te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2] + - te_annual_ccsInj_cost[, ttot_from2005, cco2Techs] / (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), - paste0("LCOCCS|average|", "ico2|", te_cco2, "|carbon management", "|Total Cost")), - setNames((te_annual_inv_cost_wadj[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + - te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2] + - te_annual_ccsInj_inclAdjCost[, ttot_from2005, cco2Techs] / (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), - paste0("LCOCCS|average|", "ico2|", te_cco2, "|carbon management", "|Total Cost w/ Adj Cost")), - #### Carbon storing Technologies (other than CCUS chain; for now only if EW included, will include biochar in future) - if (EW_name %in% teCDR) { - mbind( - ## calculation based on removal initiated in t - setNames(te_annual_inv_cost[, ttot_from2005, te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Investment Cost")), - setNames(te_annual_inv_cost_wadj[, ttot_from2005, te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Investment Cost w/ Adj Cost")), - setNames(te_annual_fuel_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Fuel Cost")), - setNames(te_annual_secFuel_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Second Fuel Cost")), - setNames(te_annual_otherFuel_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCC|average|", "sco2|", te_sco2, "|carbon management", "|Other Fuel Cost")), - setNames(te_annual_OMF_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|OMF Cost")), - setNames(te_annual_OMV_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], - paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|OMV Cost")), - # specific to enhanced weathering - setNames(EW_fixed_other_cost[, , ] / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], - paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|OMF other Cost")), - setNames(EW_fixed_transport_cost / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], - paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|OMF transport Cost")), - # sum for enhanced weathering (incl. special om cost) - setNames((te_annual_inv_cost[, ttot_from2005, EW_name] + te_annual_OMF_cost[, , EW_name] + te_annual_otherFuel_cost[, , EW_name] + EW_fixed_other_cost + - EW_fixed_transport_cost) / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], - paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|Total Cost")), - setNames((te_annual_inv_cost_wadj[, ttot_from2005, EW_name] + te_annual_otherFuel_cost[, , EW_name] + EW_fixed_other_cost + - EW_fixed_transport_cost) / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], - paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|Total Cost w/ Adj Cost")) - ) - } else { - NULL - } - ) * s_usd2017t2015 - - # convert to better dimensional format - df.lcoe.avg <- as.quitte(LCOE.avg) %>% - select(region, period, data, value) %>% - rename(variable = data) %>% - replace(is.na(.), 0) - - # extract further dimensions from variable name - df.lcoe.avg$type <- strsplit(as.character(df.lcoe.avg$variable), "\\|") - df.lcoe.avg$type <- sapply(df.lcoe.avg$type, "[[", 2) - - df.lcoe.avg$output <- strsplit(as.character(df.lcoe.avg$variable), "\\|") - df.lcoe.avg$output <- sapply(df.lcoe.avg$output, "[[", 3) - - df.lcoe.avg$tech <- strsplit(as.character(df.lcoe.avg$variable), "\\|") - df.lcoe.avg$tech <- sapply(df.lcoe.avg$tech, "[[", 4) - - df.lcoe.avg$sector <- strsplit(as.character(df.lcoe.avg$variable), "\\|") - df.lcoe.avg$sector <- sapply(df.lcoe.avg$sector, "[[", 5) - - df.lcoe.avg$cost <- strsplit(as.character(df.lcoe.avg$variable), "\\|") - df.lcoe.avg$cost <- sapply(df.lcoe.avg$cost, "[[", 6) - - df.lcoe.avg <- df.lcoe.avg %>% - mutate(unit = "US$2015/MWh") %>% - mutate(unit = case_when(output == "ico2" | output == "cco2" | output == "sco2" ~ "US$2015/tCO2", TRUE ~ unit)) %>% - select(region, period, type, output, tech, sector, unit, cost, value) - - # reconvert to magpie object - LCOE.avg.out <- suppressWarnings(as.magpie(df.lcoe.avg, spatial = 1, temporal = 2, datacol = 9)) - # bind to output file - LCOE.out <- mbind(LCOE.out, LCOE.avg.out) - } - - - - #### B) Calculation of marginal (new plant) LCOE ---- - - - if (output.type %in% c("marginal", "both", "marginal detail")) { -# variable definitions for dplyr operations in the following section -# avoids error of "no visible binding for global variable for X" in buildLibrary() - region <- NULL - period <- NULL - all_te <- NULL - value <- NULL - char <- NULL - maxprod <- NULL - CapDistr <- NULL - nur <- NULL - rlf <- NULL - CAPEX <- NULL - prodSE <- NULL - AtBound <- NULL - tech <- NULL - best.rlf <- NULL - all_enty <- NULL - pomeg <- NULL - fuel.price <- NULL - pomeg.total <- NULL - eff <- NULL - OMF <- NULL - OMV <- NULL - lifetime <- NULL - annuity.fac <- NULL - CapFac <- NULL - fuel.price.weighted.mean <- NULL - `Investment Cost` <- NULL - `OMF Cost` <- NULL - `OMV Cost` <- NULL - `Fuel Cost` <- NULL - `Total LCOE` <- NULL - `cost` <- NULL - `variable` <- NULL - fuel <- NULL - output <- NULL - opTimeYr <- NULL - co2.price <- NULL - emiFac <- NULL - all_enty1 <- NULL - input <- NULL - emiFac.se2fe <- NULL - co2_dem <- NULL - CO2StoreShare <- NULL - all_enty2 <- NULL - secfuel <- NULL - secfuel.prod <- NULL - grid.factor <- NULL - grid.cost <- NULL - vm_prodSeVRE <- NULL - storloss <- NULL - VREstor.cost <- NULL - all_te1 <- NULL - CCStax.cost <- NULL - co2.price.weighted.mean <- NULL - secfuel.price <- NULL - `CO2 Tax Cost` <- NULL - `CO2 Provision Cost` <- NULL - `Second Fuel Cost` <- NULL - `VRE Storage Cost` <- NULL - `Grid Cost` <- NULL - `CCS Tax Cost` <- NULL - `CCS Cost` <- NULL - type <- NULL - FlexTax <- NULL - data <- NULL - sector <- NULL - NotBuilt <- NULL - FlexPriceShare <- NULL - all_in <- NULL - FEtax <- NULL - `Flex Tax` <- NULL - `FE Tax` <- NULL - all_esty <- NULL - all_teEs <- NULL - curtShare <- NULL - `Curtailment Cost` <- NULL - maxcap <- NULL - AddH2TdCost <- NULL - `Additional H2 t&d Cost` <- NULL - emi_sectors <- NULL - fe2es.buildings <- pm_tau_fe_tax_ES_st <- pm_tau_fe_sub_ES_st <- NULL - model <- scenario <- variable <- unit <- NULL - AdjCost <- NULL - operationPeriod <- NULL - discount <- NULL - weight <- NULL - p_teAnnuity <- NULL - subrate <- NULL - taxrate <- NULL - fuel.price.weighted <- NULL - co2.price.weighted <- NULL - `Fuel Cost (time step prices)` <- NULL - `Fuel Cost (intertemporal prices)` <- NULL - `CO2 Tax Cost (time step prices)` <- NULL - `CO2 Tax Cost (intertemporal prices)` <- NULL - `Total LCOE (time step prices)` <- NULL - `Total LCOE (intertemporal prices)` <- NULL - `Adjustment Cost` <- NULL - `SE Tax` <- NULL - `tau_SE_tax` <- NULL - - - - - # Prepare data for LCOE calculation ---- - - - ### Read sets and mappings from GDX ---- - - - ### technologies - pe2se <- readGDX(gdx, "pe2se") # pe2se technology mappings - se2se <- readGDX(gdx, "se2se") # hydrogen <--> electricity technologies - se2fe <- readGDX(gdx, "se2fe") # se2fe technology mappings - te <- readGDX(gdx, "te") # all technologies - teStor <- readGDX(gdx, "teStor") # storage technologies for VREs - teGrid <- readGDX(gdx, "teGrid") # grid technologies for VREs - ccs2te <- readGDX(gdx, "ccs2te") # ccsinje technology - teReNoBio <- readGDX(gdx, "teReNoBio") # renewable technologies without biomass - teCCS <- readGDX(gdx, "teCCS") # ccs technologies - teReNoBio <- c(teReNoBio) # renewables without biomass - teVRE <- readGDX(gdx, "teVRE") # VRE technologies - # exclude "windoff" from teVRE as "windoff" does not have separate grid, storage technologies - if ("windoff" %in% as.vector(teVRE)) { - teVRE <- as.vector(teVRE) - teVRE <- teVRE[teVRE != "windoff"] - } + paste0("LCOE|average|", pe2se$all_enty1, "|", pe2se$all_te, "|supply-side", "|Total Cost w/ Adj Cost")), + #### Carbon Transport and storage ("ccsinje") + setNames(te_annual_inv_cost[, ttot_from2005, "ccsinje"] / + vm_co2CCS_tCO2[, , "ccsinje.1"], + paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Investment Cost")), + setNames(te_annual_inv_cost_wadj[, ttot_from2005, "ccsinje"] / + vm_co2CCS_tCO2[, , "ccsinje.1"], + paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Investment Cost w/ Adj Cost")), + setNames(te_annual_OMF_cost[, , "ccsinje"] / vm_co2CCS_tCO2[, , "ccsinje.1"], + paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|OMF Cost")), + setNames(te_annual_secFuel_cost[, , "ccsinje"] / vm_co2CCS_tCO2[, , "ccsinje.1"], + paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Second Fuel Cost")), + setNames((te_annual_inv_cost[, ttot_from2005, "ccsinje"] + te_annual_OMF_cost[, , "ccsinje"] + te_annual_secFuel_cost[, , "ccsinje"]) / vm_co2CCS_tCO2[, , "ccsinje.1"], + paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Total Cost")), + setNames((te_annual_inv_cost_wadj[, ttot_from2005, "ccsinje"] + te_annual_OMF_cost[, , "ccsinje"] + te_annual_secFuel_cost[, , "ccsinje"]) / vm_co2CCS_tCO2[, , "ccsinje.1"], + paste0("LCOCS|average|", "ico2|", "ccsinje", "|carbon management", "|Total Cost w/ Adj Cost")), + #### Carbon Management Technologies + ### main cost + setNames(te_annual_inv_cost[, ttot_from2005, te_cco2] / + cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Investment Cost")), + setNames(te_annual_inv_cost_wadj[, ttot_from2005, te_cco2] / + cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Investment Cost w/ Adj Cost")), + setNames(te_annual_fuel_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Fuel Cost")), + setNames(te_annual_secFuel_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Second Fuel Cost")), + setNames(te_annual_otherFuel_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Other Fuel Cost")), + setNames(te_annual_OMF_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|OMF Cost")), + setNames(te_annual_OMV_cost[, , te_cco2] / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|OMV Cost")), + ### cost of storage / amount of the total captured that is stored + setNames(te_annual_ccsInj_cost[, ttot_from2005, cco2Techs] / + (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), + paste0("LCOCC|average|", "ico2|", cco2Techs, "|carbon management", "|CCS Cost")), + setNames(te_annual_ccsInj_inclAdjCost[, ttot_from2005, cco2Techs] / + (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), + paste0("LCOCC|average|", "ico2|", cco2Techs, "|carbon management", "|CCS Cost w/ Adj Cost")), + ### total cost for capturing co2 + setNames((te_annual_inv_cost[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + + te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Total Cost")), + setNames((te_annual_inv_cost_wadj[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + + te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2], + paste0("LCOCC|average|", "cco2|", te_cco2, "|carbon management", "|Total Cost w/ Adj Cost")), + ### total cost for injecting co2. + setNames((te_annual_inv_cost[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + + te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2] + + te_annual_ccsInj_cost[, ttot_from2005, cco2Techs] / (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), + paste0("LCOCCS|average|", "ico2|", te_cco2, "|carbon management", "|Total Cost")), + setNames((te_annual_inv_cost_wadj[, ttot_from2005, te_cco2] + te_annual_OMF_cost[, , te_cco2] + te_annual_OMV_cost[, , te_cco2] + + te_annual_fuel_cost[, , te_cco2] + te_annual_secFuel_cost[, , te_cco2] + te_annual_otherFuel_cost[, , te_cco2]) / cco2_byTech_tCO2[, ttot_from2005, te_cco2] + + te_annual_ccsInj_inclAdjCost[, ttot_from2005, cco2Techs] / (cco2_byTech_tCO2[, ttot_from2005, cco2Techs] * dimSums(vm_co2CCS / vm_co2capture)), + paste0("LCOCCS|average|", "ico2|", te_cco2, "|carbon management", "|Total Cost w/ Adj Cost")), + #### Carbon storing Technologies (other than CCUS chain; for now only if EW included, will include biochar in future) + if (EW_name %in% teCDR) { + mbind( + ## calculation based on removal initiated in t + setNames(te_annual_inv_cost[, ttot_from2005, te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Investment Cost")), + setNames(te_annual_inv_cost_wadj[, ttot_from2005, te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Investment Cost w/ Adj Cost")), + setNames(te_annual_fuel_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Fuel Cost")), + setNames(te_annual_secFuel_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|Second Fuel Cost")), + setNames(te_annual_otherFuel_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCC|average|", "sco2|", te_sco2, "|carbon management", "|Other Fuel Cost")), + setNames(te_annual_OMF_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|OMF Cost")), + setNames(te_annual_OMV_cost[, , te_sco2] / cdrco2_byTech_tCO2[, ttot_from2005, te_sco2], + paste0("LCOCS|average|", "sco2|", te_sco2, "|carbon management", "|OMV Cost")), + # specific to enhanced weathering + setNames(EW_fixed_other_cost[, , ] / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], + paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|OMF other Cost")), + setNames(EW_fixed_transport_cost / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], + paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|OMF transport Cost")), + # sum for enhanced weathering (incl. special om cost) + setNames((te_annual_inv_cost[, ttot_from2005, EW_name] + te_annual_OMF_cost[, , EW_name] + te_annual_otherFuel_cost[, , EW_name] + EW_fixed_other_cost + + EW_fixed_transport_cost) / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], + paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|Total Cost")), + setNames((te_annual_inv_cost_wadj[, ttot_from2005, EW_name] + te_annual_otherFuel_cost[, , EW_name] + EW_fixed_other_cost + + EW_fixed_transport_cost) / cdrco2_byTech_tCO2[, ttot_from2005, EW_name], + paste0("LCOCS|average|", "sco2|", EW_name, "|carbon management", "|Total Cost w/ Adj Cost")) + ) + } else { + NULL + } + ) * s_usd2017t2015 - # energy carriers - entyPe <- readGDX(gdx, "entyPe") - entySe <- readGDX(gdx, "entySe") - entyFe <- readGDX(gdx, "entyFe") + # convert to better dimensional format + df.lcoe.avg <- as.quitte(LCOE.avg) %>% + select("region", "period", "data", "value") %>% + rename(variable = data) %>% + replace(is.na(.), 0) - # final energy demand - vm_demFeSector <- readGDX(gdx, "vm_demFeSector", field = "l", restore_zeros = FALSE) + # extract further dimensions from variable name + df.lcoe.avg$type <- strsplit(as.character(df.lcoe.avg$variable), "\\|") + df.lcoe.avg$type <- sapply(df.lcoe.avg$type, "[[", 2) - # conversion factors - s_twa2mwh <- readGDX(gdx, c("sm_TWa_2_MWh", "s_TWa_2_MWh", "s_twa2mwh"), format = "first_found") + df.lcoe.avg$output <- strsplit(as.character(df.lcoe.avg$variable), "\\|") + df.lcoe.avg$output <- sapply(df.lcoe.avg$output, "[[", 3) + df.lcoe.avg$tech <- strsplit(as.character(df.lcoe.avg$variable), "\\|") + df.lcoe.avg$tech <- sapply(df.lcoe.avg$tech, "[[", 4) - # all technologies to calculate LCOE for - te_LCOE <- c(pe2se$all_te, se2se$all_te, se2fe$all_te, "ccsinje") + df.lcoe.avg$sector <- strsplit(as.character(df.lcoe.avg$variable), "\\|") + df.lcoe.avg$sector <- sapply(df.lcoe.avg$sector, "[[", 5) - # all technologies to calculate investment, adjustment and O&M LCOE for (needed for storage, grid cost) - te_LCOE_Inv <- c(te_LCOE, as.vector(teStor), as.vector(teGrid), te[te %in% c("dac")]) + df.lcoe.avg$cost <- strsplit(as.character(df.lcoe.avg$variable), "\\|") + df.lcoe.avg$cost <- sapply(df.lcoe.avg$cost, "[[", 6) - # technologies to produce SE - te_SE_gen <- c(pe2se$all_te, se2se$all_te) + df.lcoe.avg <- df.lcoe.avg %>% + mutate(unit = "US$2015/MWh") %>% + mutate(unit = case_when(output == "ico2" | output == "cco2" | output == "sco2" ~ "US$2015/tCO2", TRUE ~ unit)) %>% + select("region", "period", "type", "output", "tech", "sector", "unit", "cost", "value") - # auxiliary technologies to calculate other cost parts: grid cost, storage cost, carbon capture and storage - te_aux_tech <- c(teStor, teGrid, ccs2te$all_te) + # reconvert to magpie object + LCOE.avg.out <- suppressWarnings(as.magpie(df.lcoe.avg, spatial = 1, temporal = 2, datacol = 9)) + # bind to output file + LCOE.out <- mbind(LCOE.out, LCOE.avg.out) + } - # mappings - se_gen_mapping <- rbind(pe2se, se2se) - colnames(se_gen_mapping) <- c("fuel", "output", "tech") - # all energy system technologies mapping - en2en <- readGDX(gdx, "en2en") %>% - filter(all_te %in% te_LCOE) - colnames(en2en) <- c("fuel", "output", "tech") - # VRE to storage - VRE2teStor <- readGDX(gdx, "VRE2teStor") %>% - rename(tech = all_te) + #### B) Calculation of marginal (new plant) LCOE ---- + + + if (output.type %in% c("marginal", "both", "marginal detail")) { + # variable definitions for dplyr operations in the following section + # avoids error of "no visible binding for global variable for X" in buildLibrary() + region <- NULL + period <- NULL + all_te <- NULL + value <- NULL + char <- NULL + CapDistr <- NULL + nur <- NULL + rlf <- NULL + CAPEX <- NULL + tech <- NULL + all_enty <- NULL + pomeg <- NULL + fuel.price <- NULL + eff <- NULL + OMF <- NULL + OMV <- NULL + lifetime <- NULL + annuity.fac <- NULL + CapFac <- NULL + `Investment Cost` <- NULL + `OMF Cost` <- NULL + `OMV Cost` <- NULL + `cost` <- NULL + `variable` <- NULL + fuel <- NULL + output <- NULL + opTimeYr <- NULL + co2.price <- NULL + emiFac <- NULL + all_enty1 <- NULL + input <- NULL + emiFac.se2fe <- NULL + co2_dem <- NULL + CO2StoreShare <- NULL + all_enty2 <- NULL + secfuel <- NULL + secfuel.prod <- NULL + all_te1 <- NULL + CCStax.cost <- NULL + secfuel.price <- NULL + `CO2 Provision Cost` <- NULL + `Second Fuel Cost` <- NULL + `CCS Tax Cost` <- NULL + type <- NULL + data <- NULL + sector <- NULL + FlexPriceShare <- NULL + FEtax <- NULL + `Flex Tax` <- NULL + `FE Tax` <- NULL + curtShare <- NULL + `Curtailment Cost` <- NULL + AddH2TdCost <- NULL + `Additional H2 t&d Cost` <- NULL + emi_sectors <- NULL + model <- scenario <- variable <- unit <- NULL + AdjCost <- NULL + operationPeriod <- NULL + discount <- NULL + weight <- NULL + p_teAnnuity <- NULL + subrate <- NULL + taxrate <- NULL + fuel.price.weighted <- NULL + co2.price.weighted <- NULL + `Fuel Cost (time step prices)` <- NULL + `Fuel Cost (intertemporal prices)` <- NULL + `CO2 Tax Cost (time step prices)` <- NULL + `CO2 Tax Cost (intertemporal prices)` <- NULL + `Total LCOE (time step prices)` <- NULL + `Total LCOE (intertemporal prices)` <- NULL + `Adjustment Cost` <- NULL + `SE Tax` <- NULL + `tau_SE_tax` <- NULL + + # Prepare data for LCOE calculation ---- + + + ### Read sets and mappings from GDX ---- + + + ### technologies + pe2se <- readGDX(gdx, "pe2se") # pe2se technology mappings + se2se <- readGDX(gdx, "se2se") # hydrogen <--> electricity technologies + se2fe <- readGDX(gdx, "se2fe") # se2fe technology mappings + te <- readGDX(gdx, "te") # all technologies + teStor <- readGDX(gdx, "teStor") # storage technologies for VREs + teGrid <- readGDX(gdx, "teGrid") # grid technologies for VREs + ccs2te <- readGDX(gdx, "ccs2te") # ccsinje technology + teReNoBio <- readGDX(gdx, "teReNoBio") # renewable technologies without biomass + teCCS <- readGDX(gdx, "teCCS") # ccs technologies + teReNoBio <- c(teReNoBio) # renewables without biomass + teVRE <- readGDX(gdx, "teVRE") # VRE technologies + # exclude "windoff" from teVRE as "windoff" does not have separate grid, storage technologies + if ("windoff" %in% as.vector(teVRE)) { + teVRE <- as.vector(teVRE) + teVRE <- teVRE[teVRE != "windoff"] + } - ### time steps - ttot <- as.numeric(readGDX(gdx, "ttot")) - ttot_from2005 <- paste0("y", ttot[which(ttot >= 2005)]) + # final energy demand + vm_demFeSector <- readGDX(gdx, "vm_demFeSector", field = "l", restore_zeros = FALSE) - ### conversion factors - s_twa2mwh <- as.vector(readGDX(gdx, c("sm_TWa_2_MWh", "s_TWa_2_MWh", "s_twa2mwh"), format = "first_found")) + # conversion factors + s_twa2mwh <- readGDX(gdx, c("sm_TWa_2_MWh", "s_TWa_2_MWh", "s_twa2mwh"), format = "first_found") + # all technologies to calculate LCOE for + te_LCOE <- c(pe2se$all_te, se2se$all_te, se2fe$all_te, "ccsinje") - ### Read investment and O&M cost ---- + # all technologies to calculate investment, adjustment and O&M LCOE for (needed for storage, grid cost) + te_LCOE_Inv <- c(te_LCOE, as.vector(teStor), as.vector(teGrid), te[te %in% c("dac")]) - # investment cost - vm_costTeCapital <- readGDX(gdx, "vm_costTeCapital", field = "l", restore_zeros = FALSE)[, ttot_from2005, te_LCOE_Inv] + # mappings + se_gen_mapping <- rbind(pe2se, se2se) + colnames(se_gen_mapping) <- c("fuel", "output", "tech") + # all energy system technologies mapping + en2en <- readGDX(gdx, "en2en") %>% + filter(all_te %in% te_LCOE) + colnames(en2en) <- c("fuel", "output", "tech") - df.CAPEX <- as.quitte(vm_costTeCapital) %>% - select(region, period, all_te, value) %>% - rename(tech = all_te, CAPEX = value) %>% - left_join(en2en, by = c("tech")) %>% - select(region, period, tech, fuel, output, CAPEX) + ### time steps + ttot <- as.numeric(readGDX(gdx, "ttot")) + ttot_from2005 <- paste0("y", ttot[which(ttot >= 2005)]) - # omf cost - pm_data_omf <- readGDX(gdx, "pm_data", restore_zeros = FALSE)[, , "omf"] + ### conversion factors + s_twa2mwh <- as.vector(readGDX(gdx, c("sm_TWa_2_MWh", "s_TWa_2_MWh", "s_twa2mwh"), format = "first_found")) - df.OMF <- as.quitte(pm_data_omf) %>% - select(region, all_te, value) %>% - rename(tech = all_te, OMF = value) - # omv cost - pm_data_omv <- readGDX(gdx, "pm_data", restore_zeros = FALSE)[, , "omv"] - df.OMV <- as.quitte(pm_data_omv) %>% - select(region, all_te, value) %>% - rename(tech = all_te, OMV = value) + ### Read investment and O&M cost ---- + # investment cost + vm_costTeCapital <- readGDX(gdx, "vm_costTeCapital", field = "l", restore_zeros = FALSE)[, ttot_from2005, te_LCOE_Inv] - # Read/calculate capacity factors ---- - # capacity factor of non-renewables - vm_capFac <- readGDX(gdx, "vm_capFac", field = "l", restore_zeros = FALSE)[, ttot_from2005, ] + df.CAPEX <- as.quitte(vm_costTeCapital) %>% + select(region, period, all_te, value) %>% + rename(tech = all_te, CAPEX = value) %>% + left_join(en2en, by = c("tech")) %>% + select(region, period, tech, fuel, output, CAPEX) - # calculate renewable capacity factors of new plants - v_capDistr <- readGDX(gdx, c("vm_capDistr", "v_capDistr"), field = "l", restore_zeros = FALSE) - pm_dataren <- readGDX(gdx, "pm_dataren", restore_zeros = FALSE) + # omf cost + pm_data_omf <- readGDX(gdx, "pm_data", restore_zeros = FALSE)[, , "omf"] + df.OMF <- as.quitte(pm_data_omf) %>% + select(region, all_te, value) %>% + rename(tech = all_te, OMF = value) - ### determine capacity factor of highest free grade for renewables - # RE capacity distribution over grades - df.CapDistr <- as.quitte(v_capDistr) %>% - select(region, all_te, period, rlf, value) %>% - rename(tech = all_te, CapDistr = value) + # omv cost + pm_data_omv <- readGDX(gdx, "pm_data", restore_zeros = FALSE)[, , "omv"] - # max. potential of renewable production per grade - df.RE.maxprod <- as.quitte(pm_dataren[, , c("maxprod", "nur")]) %>% - rename(tech = all_te) %>% - select(region, tech, rlf, char, value) %>% - spread(char, value) + df.OMV <- as.quitte(pm_data_omv) %>% + select(region, all_te, value) %>% + rename(tech = all_te, OMV = value) - # calculate marginal renewable capacity factor - df.CapFac.ren <- df.CapDistr %>% - filter(tech %in% c(teReNoBio, teVRE)) %>% - left_join(df.RE.maxprod, by = c("region", "tech", "rlf")) %>% - # filter for the lowest grade that is filled (remark by Robert: this will then slightly overestimate CF for the cases that the model expands this technology, but in such a case it will anyway go into the next bad grade in the next time step, so it should in general look better) - # but not smaller than ninth grade (last grade of spv; still check all REN technologies for number of last grade) - filter(CapDistr >= 1e-7 | as.numeric(rlf) >= 9) %>% - # choose highest grade - group_by(region, period, tech) %>% - summarise(CapFac = min(nur)) %>% - ungroup() - # CapFac, merge renewble and non renewable Cap Facs - df.CapFac <- as.quitte(vm_capFac) %>% - select(region, period, all_te, value) %>% - rename(tech = all_te, CapFac = value) %>% - filter(!tech %in% teReNoBio) %>% - rbind(df.CapFac.ren) %>% - mutate(period = as.numeric(period)) + # Read/calculate capacity factors ---- - ### Read plant lifetime and annuity factor ---- + # capacity factor of non-renewables + vm_capFac <- readGDX(gdx, "vm_capFac", field = "l", restore_zeros = FALSE)[, ttot_from2005, ] - # discount rate - r <- 0.051 - # r <- readGDX(gdx, name="p_r", restore_zeros = F) - # - # r <- r %>% - # as.data.frame() %>% - # # filter(Year < 2110) %>% - # dplyr::group_by() %>% - # dplyr::summarise( Value = mean(Value) , .groups = 'keep' ) %>% - # dplyr::ungroup() %>% - # as.magpie() + # calculate renewable capacity factors of new plants + v_capDistr <- readGDX(gdx, c("vm_capDistr", "v_capDistr"), field = "l", restore_zeros = FALSE) + pm_dataren <- readGDX(gdx, "pm_dataren", restore_zeros = FALSE) - # read lifetime of technology - # calculate annuity factor to annuitize CAPEX and OMF (annuity factor labeled "annuity.fac") - lt <- readGDX(gdx, name = "fm_dataglob", restore_zeros = FALSE)[, , "lifetime"][, , te_LCOE_Inv][, , "lifetime"] - df.lifetime <- as.quitte(lt) %>% - select(all_te, value) %>% - rename(tech = all_te, lifetime = value) %>% - mutate(annuity.fac = r * (1 + r)^lifetime / (-1 + (1 + r)^lifetime)) + ### determine capacity factor of highest free grade for renewables + # RE capacity distribution over grades + df.CapDistr <- as.quitte(v_capDistr) %>% + select(region, all_te, period, rlf, value) %>% + rename(tech = all_te, CapDistr = value) + # max. potential of renewable production per grade + df.RE.maxprod <- as.quitte(pm_dataren[, , c("maxprod", "nur")]) %>% + rename(tech = all_te) %>% + select(region, tech, rlf, char, value) %>% + spread(char, value) - ### note: just take LCOE investment cost formula with fix lifetime, ignoring that in REMIND capacity is drepeciating over time - ### actually you would need to divide CAPEX by CapFac * 8760 * p_omeg and then add a discounting. - ### Would need to discuss again how to add the discount in such formula. - - # # annuity factor from REMIND, - # TODO: check whether this is the same as calculated above - # so far only used in levelized cost of DAC calculation below - p_teAnnuity <- readGDX(gdx, c("p_teAnnuity", "pm_teAnnuity"), restore_zeros = FALSE) - - ### Read marginal adjustment costs ---- - - # Read marginal adjustment cost calculated in core/postsolve.gms - # It is calculated as d(vm_costInvTeAdj) / d(vm_deltaCap). - # Unit: trUSD2017/ (TW(out)/yr). - o_margAdjCostInv <- readGDX(gdx, "o_margAdjCostInv", restore_zeros = FALSE) - - df.margAdjCostInv <- as.quitte(o_margAdjCostInv) %>% - rename(tech = all_te, - AdjCost = value) %>% - select(region, period, tech, AdjCost) - - ### Read fuel price ---- - - # fuels to calculate price for - fuels <- c("peoil", "pegas", "pecoal", "peur", "pebiolc", "pebios", "pebioil", - "seel", "seliqbio", "seliqfos", "seliqsyn", "sesobio", "sesofos", "seh2", "segabio", - "segafos", "segasyn", "sehe") - - pm_PEPrice <- readGDX(gdx, "pm_PEPrice", restore_zeros = FALSE) - pm_SEPrice <- readGDX(gdx, "pm_SEPrice", restore_zeros = FALSE) - # bind PE and SE prices and convert from tr USD 2017/TWa to USD2015/MWh - Fuel.Price <- mbind(pm_PEPrice, pm_SEPrice)[, , fuels] * 1e12 / s_twa2mwh * s_usd2017t2015 - - # Fuel price for the time period for which LCOE are calculated - df.Fuel.Price <- as.quitte(Fuel.Price) %>% - select(region, period, all_enty, value) %>% - rename(fuel = all_enty, fuel.price = value) %>% - # replace zeros by last or (if not available) next value of time series (marginals are sometimes zero if there are other constriants) - mutate(fuel.price = ifelse(fuel.price == 0, NA, fuel.price)) %>% - group_by(region, fuel) %>% - tidyr::fill(fuel.price, .direction = "downup") %>% - ungroup() - - ### Read carbon price ---- - p_priceCO2 <- readGDX(gdx, name = c("p_priceCO2", "pm_priceCO2"), format = "first_found") # co2 price + # calculate marginal renewable capacity factor + df.CapFac.ren <- df.CapDistr %>% + filter(tech %in% c(teReNoBio, teVRE)) %>% + left_join(df.RE.maxprod, by = c("region", "tech", "rlf")) %>% + # filter for the lowest grade that is filled (remark by Robert: this will then slightly overestimate CF for the cases that the model expands this technology, but in such a case it will anyway go into the next bad grade in the next time step, so it should in general look better) + # but not smaller than ninth grade (last grade of spv; still check all REN technologies for number of last grade) + filter(CapDistr >= 1e-7 | as.numeric(rlf) >= 9) %>% + # choose highest grade + group_by(region, period, tech) %>% + summarise(CapFac = min(nur)) %>% + ungroup() - # carbon price for the time period for which LCOE are calculated - df.co2price <- as.quitte(p_priceCO2) %>% - select(region, period, value) %>% - # where carbon price is NA, it is zero - # convert from USD2017/tC CO2 to USD2015/tCO2 - mutate(value = ifelse(is.na(value), 0, value * s_usd2017t2015 / 3.66)) %>% - rename(co2.price = value) - - # Calculate intertemporal fuel and carbon prices ---- - - # This section calculates weighted-average of the prices seen by a plant over - # its time of operation. It takes into account that fuel cost are discounted over time - # and that capacities depreciate over time such that near-term prices - # should be weighted higher in the LCOE than long-term prices. - # Weighted average fuel prices FP_avg are calculated - # from fuel prices over period t FP_t as: - # FP_avg = sum_t ( (discount_t * pomeg_t * FP_t) / (sum_t (discount_t * pomeg_t)) - # discount_t: discounting factor - # pomeg_t: depreciation factor, gives fraction of operating capacity over lifetime of plant - - - # retrieve capacity distribution over lifetime - # (fraction of capacity still standing in that year of plant lifetime) - p_omeg <- readGDX(gdx, c("pm_omeg", "p_omeg"), format = "first_found") - - # operation time steps of plant, only take every 5 years and limit calculation to 50 years as - # by then most of the capacity of all technologies is already retired - set_operation_period <- c(1, seq(5, 50, 5)) - - - # capacity distribution over lifetime - df.pomeg <- as.quitte(p_omeg) %>% - rename(tech = all_te, pomeg = value) %>% - # to save run time, only take p_omeg in ten year time steps only up to lifetimes of 50 years, - # erase region dimension, pomeg same across all regions - filter(opTimeYr %in% set_operation_period, - region %in% getRegions(vm_costTeCapital)[1], - tech %in% te_LCOE) %>% - select(opTimeYr, tech, pomeg) - - # create dataframe with all combinations of time steps "period" in which plant was built (commissioning period) - # time steps "operationPeriod" in which production takes place, year of operation "opTimeYr" in lifetime of plant - df.period_operationPeriod <- expand.grid(opTimeYr = unique(df.pomeg$opTimeYr), - period = getPeriods(df.Fuel.Price)) %>% - # operationPeriod is commissioning period + years of operation (opTimeYr) - # for comissioning period take value of first year of operation - mutate(operationPeriod = ifelse(as.numeric(opTimeYr) > 1, - as.numeric(opTimeYr) + period, - period)) %>% - # remove time steps from operationPeriod that are not remind_timesteps - filter(operationPeriod %in% unique(quitte::remind_timesteps$period)) - - # Join capacity distribution with above dataframe to get - # capacity distribution over all commissioning years (period) and - # operation years (operationPeriod) - df.pomeg.expand <- df.pomeg %>% - # only take capacity distribution of 5-year time steps and up to 50 years of operation - right_join(df.period_operationPeriod, - relationship = "many-to-many") %>% - # add energy input and output carrier dimension - left_join(en2en) - -# calculate average capacity-weighted and discounted fuel price over lifetime of plant -df.fuel.price.weighted <- df.pomeg.expand %>% - left_join(df.Fuel.Price, - by = c("operationPeriod" = "period", - "fuel" = "fuel"), - relationship = "many-to-many") %>% - # calculate discount factor - mutate(discount = 1 / (1 + r)^(operationPeriod - period)) %>% - # calculate weights over lifetime as operational capacity * discount factor, - # normalize by sum over all time steps for weights to add up to one - group_by(region, period, tech) %>% - mutate(weight = pomeg * discount / sum(pomeg * discount)) %>% - # calculate average weighted fuel price over lifetime as - # the sum of the capacity-discount weights - summarise(fuel.price.weighted = sum(fuel.price * weight)) %>% - ungroup() - - -df.fuel.price.weighted.check <- df.fuel.price.weighted %>% - filter(period == 2040, - region == "MEA", - tech == "refliq") - -# calculate average capacity-weighted and discounted fuel price over lifetime of plant -df.co2price.weighted <- df.pomeg.expand %>% - left_join(df.co2price, - by = c("operationPeriod" = "period"), - relationship = "many-to-many") %>% - # calculate discount factor - mutate(discount = 1 / (1 + r)^(operationPeriod - period)) %>% - # calculate weights over lifetime as operational capacity * discount factor, - # normalize by sum over all time steps for weights to add up to one - group_by(region, period, tech) %>% - mutate(weight = pomeg * discount / sum(pomeg * discount)) %>% - # calculate average weighted fuel price over lifetime as - # the sum of the capacity-discount weights - summarise(co2.price.weighted = sum(co2.price * weight)) %>% - ungroup() - - - - - - ### Read conversion efficiencies ---- - pm_eta_conv <- readGDX(gdx, "pm_eta_conv", restore_zeros = FALSE)[, ttot_from2005, ] # efficiency oftechnologies with time-independent eta - pm_dataeta <- readGDX(gdx, "pm_dataeta", restore_zeros = FALSE)[, ttot_from2005, ] # efficiency of technologies with time-dependent eta - - df.eff <- as.quitte(mbind(pm_eta_conv, pm_dataeta[, , setdiff(getNames(pm_dataeta), getNames(pm_eta_conv))])) %>% - rename(tech = all_te, eff = value) %>% - select(region, period, tech, eff) - - ### 11. get emission factors of technologies - pm_emifac <- readGDX(gdx, "pm_emifac", restore_zeros = FALSE)[, ttot_from2005, "co2"] # co2 emission factor per technology - pm_emifac_cco2 <- readGDX(gdx, "pm_emifac", restore_zeros = FALSE)[, ttot_from2005, "cco2"] # captured co2 emission factor per technology - - df.emiFac <- as.quitte(pm_emifac) %>% - # do not need period dimension - filter(period == 2005) %>% - select(region, all_te, value) %>% - # convert from GtC CO2/TWa to tCo2/MWh - mutate(value = value / s_twa2mwh * 3.66 * 1e9) %>% - rename(tech = all_te, emiFac = value) %>% - # join other technologies without emission factor -> set emission factor to zero - # (so far, only emissions of energy input captured, not of co2 input for CCU) - full_join(data.frame(tech = te_LCOE_Inv) %>% - expand(tech, region = getRegs(df.CAPEX)), by = c("region", "tech")) %>% - mutate(emiFac = ifelse(is.na(emiFac), 0, emiFac)) - - - # get se2fe emision factor to add to calculate CO2 cost for pe2se technologies whose outputs are seliqfos/segasfos etc. - df.emifac.se2fe <- df.emiFac %>% - left_join(se2fe, by = c("tech" = "all_te")) %>% - # filter for SE fossil, take diesel emifac for all liquids - filter(all_enty %in% c("seliqfos", "segafos", "sesofos")) %>% - filter(all_enty != "seliqfos" | all_enty1 == "fedie") %>% - rename(input = all_enty, emiFac.se2fe = emiFac) %>% - select(region, input, emiFac.se2fe) %>% - left_join(pe2se, by = c("input" = "all_enty1")) %>% - rename(tech = all_te) %>% - filter(emiFac.se2fe > 0) %>% - select(region, tech, emiFac.se2fe) - - - - - ### Calculate CO2 capture cost ---- - - - # temporary solution, take LCOD of DAC as the CO2 Capture Cost - - # TODO: take co2 capture cost from a fitting marginal of REMIND equations - - ### DAC: calculate Levelized Cost of CO2 from direct air capture - # DAC energy demand per unit captured CO2 (EJ/GtC) - - LCOD <- new.magpie(getRegions(vm_costTeCapital), getYears(vm_costTeCapital), - c("Investment Cost", "OMF Cost", "Electricity Cost", "Heat Cost", "Total LCOE"), fill = 0) - - if ("dac" %in% te) { - p33_fedem <- readGDX(gdx, "p33_fedem", restore_zeros = FALSE, react = "silent") - if (is.null(p33_fedem)) { # compatibility with the REMIND version prior to adding a CDR portfolio - p33_dac_fedem_el <- readGDX(gdx, "p33_dac_fedem_el", restore_zeros = FALSE) - p33_dac_fedem_heat <- readGDX(gdx, "p33_dac_fedem_heat", restore_zeros = FALSE) - p33_fedem <- new.magpie(getRegions(p33_dac_fedem_el), getYears(p33_dac_fedem_el), c("dac.feels", "dac.fehes")) - p33_fedem[, , "dac.feels"] <- p33_dac_fedem_el - p33_fedem[, , "dac.fehes"] <- p33_dac_fedem_heat[, , "fehes"] - } + # CapFac, merge renewble and non renewable Cap Facs + df.CapFac <- as.quitte(vm_capFac) %>% + select(region, period, all_te, value) %>% + rename(tech = all_te, CapFac = value) %>% + filter(!tech %in% teReNoBio) %>% + rbind(df.CapFac.ren) %>% + mutate(period = as.numeric(period)) - Fuel.Price <- magclass::matchDim(Fuel.Price, p33_fedem, dim = c(1), fill = 0) - # capital cost in trUSD2017/GtC -> convert to USD2015/tCO2 - LCOD[, , "Investment Cost"] <- vm_costTeCapital[, , "dac"] * s_usd2017t2015 / 3.66 / vm_capFac[, , "dac"] * p_teAnnuity[, , "dac"] * 1e3 - LCOD[, , "OMF Cost"] <- pm_data_omf[, , "dac"] * vm_costTeCapital[, , "dac"] * s_usd2017t2015 / 3.66 / vm_capFac[, , "dac"] * 1e3 - # electricity cost (convert DAC FE demand to GJ/tCO2 and fuel price to USD/GJ) - LCOD[, , "Electricity Cost"] <- p33_fedem[, , "dac.feels"] / 3.66 * Fuel.Price[, , "seel"] / 3.66 - # TODO: adapt to FE prices and new CDR FE structure, temporary: conversion as above, assume for now that heat is always supplied by district heat - LCOD[, , "Heat Cost"] <- p33_fedem[, , "dac.fehes"] / 3.66 * Fuel.Price[, , "sehe"] / 3.66 - LCOD[, , "Total LCOE"] <- LCOD[, , "Investment Cost"] + LCOD[, , "OMF Cost"] + LCOD[, , "Electricity Cost"] + LCOD[, , "Heat Cost"] - } + ### Read plant lifetime and annuity factor ---- - getSets(LCOD)[3] <- "cost" + # discount rate + r <- 0.051 + # r <- readGDX(gdx, name="p_r", restore_zeros = F) + # + # r <- r %>% + # as.data.frame() %>% + # # filter(Year < 2110) %>% + # dplyr::group_by() %>% + # dplyr::summarise( Value = mean(Value) , .groups = 'keep' ) %>% + # dplyr::ungroup() %>% + # as.magpie() + + # read lifetime of technology + # calculate annuity factor to annuitize CAPEX and OMF (annuity factor labeled "annuity.fac") + lt <- readGDX(gdx, name = "fm_dataglob", restore_zeros = FALSE)[, , "lifetime"][, , te_LCOE_Inv][, , "lifetime"] + + df.lifetime <- as.quitte(lt) %>% + select(all_te, value) %>% + rename(tech = all_te, lifetime = value) %>% + mutate(annuity.fac = r * (1 + r)^lifetime / (-1 + (1 + r)^lifetime)) + + + ### note: just take LCOE investment cost formula with fix lifetime, ignoring that in REMIND capacity is drepeciating over time + ### actually you would need to divide CAPEX by CapFac * 8760 * p_omeg and then add a discounting. + ### Would need to discuss again how to add the discount in such formula. + + # # annuity factor from REMIND, + # TODO: check whether this is the same as calculated above + # so far only used in levelized cost of DAC calculation below + p_teAnnuity <- readGDX(gdx, c("p_teAnnuity", "pm_teAnnuity"), restore_zeros = FALSE) + + ### Read marginal adjustment costs ---- + + # Read marginal adjustment cost calculated in core/postsolve.gms + # It is calculated as d(vm_costInvTeAdj) / d(vm_deltaCap). + # Unit: trUSD2017/ (TW(out)/yr). + o_margAdjCostInv <- readGDX(gdx, "o_margAdjCostInv", restore_zeros = FALSE) + + df.margAdjCostInv <- as.quitte(o_margAdjCostInv) %>% + rename(tech = all_te, + AdjCost = value) %>% + select(region, period, tech, AdjCost) + + ### Read fuel price ---- + + # fuels to calculate price for + fuels <- c("peoil", "pegas", "pecoal", "peur", "pebiolc", "pebios", "pebioil", + "seel", "seliqbio", "seliqfos", "seliqsyn", "sesobio", "sesofos", "seh2", "segabio", + "segafos", "segasyn", "sehe") + + pm_PEPrice <- readGDX(gdx, "pm_PEPrice", restore_zeros = FALSE) + pm_SEPrice <- readGDX(gdx, "pm_SEPrice", restore_zeros = FALSE) + # bind PE and SE prices and convert from tr USD 2017/TWa to USD2015/MWh + Fuel.Price <- mbind(pm_PEPrice, pm_SEPrice)[, , fuels] * 1e12 / s_twa2mwh * s_usd2017t2015 + + # Fuel price for the time period for which LCOE are calculated + df.Fuel.Price <- as.quitte(Fuel.Price) %>% + select(region, period, all_enty, value) %>% + rename(fuel = all_enty, fuel.price = value) %>% + # replace zeros by last or (if not available) next value of time series (marginals are sometimes zero if there are other constriants) + mutate(fuel.price = ifelse(fuel.price == 0, NA, fuel.price)) %>% + group_by(region, fuel) %>% + tidyr::fill(fuel.price, .direction = "downup") %>% + ungroup() + + ### Read carbon price ---- + p_priceCO2 <- readGDX(gdx, name = c("p_priceCO2", "pm_priceCO2"), format = "first_found") # co2 price + + # carbon price for the time period for which LCOE are calculated + df.co2price <- as.quitte(p_priceCO2) %>% + select(region, period, value) %>% + # where carbon price is NA, it is zero + # convert from USD2017/tC CO2 to USD2015/tCO2 + mutate(value = ifelse(is.na(value), 0, value * s_usd2017t2015 / 3.66)) %>% + rename(co2.price = value) + + # Calculate intertemporal fuel and carbon prices ---- + + # This section calculates weighted-average of the prices seen by a plant over + # its time of operation. It takes into account that fuel cost are discounted over time + # and that capacities depreciate over time such that near-term prices + # should be weighted higher in the LCOE than long-term prices. + # Weighted average fuel prices FP_avg are calculated + # from fuel prices over period t FP_t as: + # FP_avg = sum_t ( (discount_t * pomeg_t * FP_t) / (sum_t (discount_t * pomeg_t)) + # discount_t: discounting factor + # pomeg_t: depreciation factor, gives fraction of operating capacity over lifetime of plant + + + # retrieve capacity distribution over lifetime + # (fraction of capacity still standing in that year of plant lifetime) + p_omeg <- readGDX(gdx, c("pm_omeg", "p_omeg"), format = "first_found") + + # operation time steps of plant, only take every 5 years and limit calculation to 50 years as + # by then most of the capacity of all technologies is already retired + set_operation_period <- c(1, seq(5, 50, 5)) + + + # capacity distribution over lifetime + df.pomeg <- as.quitte(p_omeg) %>% + rename(tech = all_te, pomeg = value) %>% + # to save run time, only take p_omeg in ten year time steps only up to lifetimes of 50 years, + # erase region dimension, pomeg same across all regions + filter(opTimeYr %in% set_operation_period, + region %in% getRegions(vm_costTeCapital)[1], + tech %in% te_LCOE) %>% + select(opTimeYr, tech, pomeg) + + # create dataframe with all combinations of time steps "period" in which plant was built (commissioning period) + # time steps "operationPeriod" in which production takes place, year of operation "opTimeYr" in lifetime of plant + df.period_operationPeriod <- expand.grid(opTimeYr = unique(df.pomeg$opTimeYr), + period = getPeriods(df.Fuel.Price)) %>% + # operationPeriod is commissioning period + years of operation (opTimeYr) + # for comissioning period take value of first year of operation + mutate(operationPeriod = ifelse(as.numeric(opTimeYr) > 1, + as.numeric(opTimeYr) + period, + period)) %>% + # remove time steps from operationPeriod that are not remind_timesteps + filter(operationPeriod %in% unique(quitte::remind_timesteps$period)) + + # Join capacity distribution with above dataframe to get + # capacity distribution over all commissioning years (period) and + # operation years (operationPeriod) + df.pomeg.expand <- df.pomeg %>% + # only take capacity distribution of 5-year time steps and up to 50 years of operation + right_join(df.period_operationPeriod, + relationship = "many-to-many") %>% + # add energy input and output carrier dimension + left_join(en2en) + + # calculate average capacity-weighted and discounted fuel price over lifetime of plant + df.fuel.price.weighted <- df.pomeg.expand %>% + left_join(df.Fuel.Price, + by = c("operationPeriod" = "period", + "fuel" = "fuel"), + relationship = "many-to-many") %>% + # calculate discount factor + mutate(discount = 1 / (1 + r)^(operationPeriod - period)) %>% + # calculate weights over lifetime as operational capacity * discount factor, + # normalize by sum over all time steps for weights to add up to one + group_by(region, period, tech) %>% + mutate(weight = pomeg * discount / sum(pomeg * discount)) %>% + # calculate average weighted fuel price over lifetime as + # the sum of the capacity-discount weights + summarise(fuel.price.weighted = sum(fuel.price * weight)) %>% + ungroup() + + # calculate average capacity-weighted and discounted fuel price over lifetime of plant + df.co2price.weighted <- df.pomeg.expand %>% + left_join(df.co2price, + by = c("operationPeriod" = "period"), + relationship = "many-to-many") %>% + # calculate discount factor + mutate(discount = 1 / (1 + r)^(operationPeriod - period)) %>% + # calculate weights over lifetime as operational capacity * discount factor, + # normalize by sum over all time steps for weights to add up to one + group_by(region, period, tech) %>% + mutate(weight = pomeg * discount / sum(pomeg * discount)) %>% + # calculate average weighted fuel price over lifetime as + # the sum of the capacity-discount weights + summarise(co2.price.weighted = sum(co2.price * weight)) %>% + ungroup() + + ### Read conversion efficiencies ---- + pm_eta_conv <- readGDX(gdx, "pm_eta_conv", restore_zeros = FALSE)[, ttot_from2005, ] # efficiency oftechnologies with time-independent eta + pm_dataeta <- readGDX(gdx, "pm_dataeta", restore_zeros = FALSE)[, ttot_from2005, ] # efficiency of technologies with time-dependent eta + + df.eff <- as.quitte(mbind(pm_eta_conv, pm_dataeta[, , setdiff(getNames(pm_dataeta), getNames(pm_eta_conv))])) %>% + rename(tech = all_te, eff = value) %>% + select(region, period, tech, eff) + + ### 11. get emission factors of technologies + pm_emifac <- readGDX(gdx, "pm_emifac", restore_zeros = FALSE)[, ttot_from2005, "co2"] # co2 emission factor per technology + pm_emifac_cco2 <- readGDX(gdx, "pm_emifac", restore_zeros = FALSE)[, ttot_from2005, "cco2"] # captured co2 emission factor per technology + + df.emiFac <- as.quitte(pm_emifac) %>% + # do not need period dimension + filter(period == 2005) %>% + select(region, all_te, value) %>% + # convert from GtC CO2/TWa to tCo2/MWh + mutate(value = value / s_twa2mwh * 3.66 * 1e9) %>% + rename(tech = all_te, emiFac = value) %>% + # join other technologies without emission factor -> set emission factor to zero + # (so far, only emissions of energy input captured, not of co2 input for CCU) + full_join(data.frame(tech = te_LCOE_Inv) %>% + expand(tech, region = getRegs(df.CAPEX)), by = c("region", "tech")) %>% + mutate(emiFac = ifelse(is.na(emiFac), 0, emiFac)) + + + # get se2fe emision factor to add to calculate CO2 cost for pe2se technologies whose outputs are seliqfos/segasfos etc. + df.emifac.se2fe <- df.emiFac %>% + left_join(se2fe, by = c("tech" = "all_te")) %>% + # filter for SE fossil, take diesel emifac for all liquids + filter(all_enty %in% c("seliqfos", "segafos", "sesofos")) %>% + filter(all_enty != "seliqfos" | all_enty1 == "fedie") %>% + rename(input = all_enty, emiFac.se2fe = emiFac) %>% + select(region, input, emiFac.se2fe) %>% + left_join(pe2se, by = c("input" = "all_enty1")) %>% + rename(tech = all_te) %>% + filter(emiFac.se2fe > 0) %>% + select(region, tech, emiFac.se2fe) + + + + + ### Calculate CO2 capture cost ---- + + + # temporary solution, take LCOD of DAC as the CO2 Capture Cost + + # TODO: take co2 capture cost from a fitting marginal of REMIND equations + + ### DAC: calculate Levelized Cost of CO2 from direct air capture + # DAC energy demand per unit captured CO2 (EJ/GtC) + + LCOD <- new.magpie(getRegions(vm_costTeCapital), getYears(vm_costTeCapital), + c("Investment Cost", "OMF Cost", "Electricity Cost", "Heat Cost", "Total LCOE"), fill = 0) + + if ("dac" %in% te) { + p33_fedem <- readGDX(gdx, "p33_fedem", restore_zeros = FALSE, react = "silent") + if (is.null(p33_fedem)) { # compatibility with the REMIND version prior to adding a CDR portfolio + p33_dac_fedem_el <- readGDX(gdx, "p33_dac_fedem_el", restore_zeros = FALSE) + p33_dac_fedem_heat <- readGDX(gdx, "p33_dac_fedem_heat", restore_zeros = FALSE) + p33_fedem <- new.magpie(getRegions(p33_dac_fedem_el), getYears(p33_dac_fedem_el), c("dac.feels", "dac.fehes")) + p33_fedem[, , "dac.feels"] <- p33_dac_fedem_el + p33_fedem[, , "dac.fehes"] <- p33_dac_fedem_heat[, , "fehes"] + } - # add dimensions to fit to other tech LCOE - LCOD <- LCOD %>% - add_dimension(add = "unit", nm = "US$2015/tCO2") %>% - add_dimension(add = "tech", nm = "dac") %>% - add_dimension(add = "output", nm = "cco2") %>% - add_dimension(add = "type", nm = "marginal") %>% - add_dimension(add = "sector", dim = 3.4, nm = "carbon management") + Fuel.Price <- magclass::matchDim(Fuel.Price, p33_fedem, dim = c(1), fill = 0) + # capital cost in trUSD2017/GtC -> convert to USD2015/tCO2 + LCOD[, , "Investment Cost"] <- vm_costTeCapital[, , "dac"] * s_usd2017t2015 / 3.66 / vm_capFac[, , "dac"] * p_teAnnuity[, , "dac"] * 1e3 + LCOD[, , "OMF Cost"] <- pm_data_omf[, , "dac"] * vm_costTeCapital[, , "dac"] * s_usd2017t2015 / 3.66 / vm_capFac[, , "dac"] * 1e3 + # electricity cost (convert DAC FE demand to GJ/tCO2 and fuel price to USD/GJ) + LCOD[, , "Electricity Cost"] <- p33_fedem[, , "dac.feels"] / 3.66 * Fuel.Price[, , "seel"] / 3.66 + # TODO: adapt to FE prices and new CDR FE structure, temporary: conversion as above, assume for now that heat is always supplied by district heat + LCOD[, , "Heat Cost"] <- p33_fedem[, , "dac.fehes"] / 3.66 * Fuel.Price[, , "sehe"] / 3.66 + LCOD[, , "Total LCOE"] <- LCOD[, , "Investment Cost"] + LCOD[, , "OMF Cost"] + LCOD[, , "Electricity Cost"] + LCOD[, , "Heat Cost"] + } + getSets(LCOD)[3] <- "cost" - # Co2 Capture price, marginal of q_balcapture, convert from tr USD 2017/GtC to USD2015/tCO2 - qm_balcapture <- readGDX(gdx, "q_balcapture", field = "m", restore_zeros = FALSE) - Co2.Capt.Price <- qm_balcapture / - (qm_budget[, getYears(qm_balcapture), ] + 1e-10) * 1e3 * s_usd2017t2015 / 3.66 ## looks weird + # add dimensions to fit to other tech LCOE + LCOD <- LCOD %>% + add_dimension(add = "unit", nm = "US$2015/tCO2") %>% + add_dimension(add = "tech", nm = "dac") %>% + add_dimension(add = "output", nm = "cco2") %>% + add_dimension(add = "type", nm = "marginal") %>% + add_dimension(add = "sector", dim = 3.4, nm = "carbon management") - ### for now, just assume CO2 Capture Cost = DAC Cost - Co2.Capt.Price[, , ] <- LCOD[, , "dac"][, , "Total LCOE"] + # Co2 Capture price, marginal of q_balcapture, convert from tr USD 2017/GtC to USD2015/tCO2 + qm_balcapture <- readGDX(gdx, "q_balcapture", field = "m", restore_zeros = FALSE) + Co2.Capt.Price <- qm_balcapture / + (qm_budget[, getYears(qm_balcapture), ] + 1e-10) * 1e3 * s_usd2017t2015 / 3.66 ## looks weird - df.Co2.Capt.Price <- as.quitte(Co2.Capt.Price) %>% - rename(Co2.Capt.Price = value) %>% - select(region, period, Co2.Capt.Price) + ### for now, just assume CO2 Capture Cost = DAC Cost + Co2.Capt.Price[, , ] <- LCOD[, , "dac"][, , "Total LCOE"] + df.Co2.Capt.Price <- as.quitte(Co2.Capt.Price) %>% + rename(Co2.Capt.Price = value) %>% + select(region, period, Co2.Capt.Price) - # CO2 required per unit output (for CCU technologies) - if (module2realisation["CCU", 2] == "on") { - p39_co2_dem <- readGDX(gdx, c("p39_co2_dem", "p39_ratioCtoH"), restore_zeros = FALSE)[, , ] - } else { - # some dummy data, only needed to create the following data frame if CCU is off - p39_co2_dem <- new.magpie(getRegions(vm_costTeCapital), getYears(vm_costTeCapital), fill = 0) - } - df.co2_dem <- as.quitte(p39_co2_dem) %>% - rename(co2_dem = value, tech = all_te) %>% - select(region, period, tech, co2_dem) %>% - # from GtC CO2/TWa(H2) to tCO2/MWh(H2) - mutate(co2_dem = co2_dem * 3.66 / s_twa2mwh * 1e9) - ### 13. calculate share stored carbon from capture carbon - vm_co2CCS <- readGDX(gdx, "vm_co2CCS", field = "l", restore_zeros = FALSE) - vm_co2capture <- readGDX(gdx, "vm_co2capture", field = "l", restore_zeros = FALSE) + # CO2 required per unit output (for CCU technologies) + if (module2realisation["CCU", 2] == "on") { + p39_co2_dem <- readGDX(gdx, c("p39_co2_dem", "p39_ratioCtoH"), restore_zeros = FALSE)[, , ] + } else { + # some dummy data, only needed to create the following data frame if CCU is off + p39_co2_dem <- new.magpie(getRegions(vm_costTeCapital), getYears(vm_costTeCapital), fill = 0) + } + + df.co2_dem <- as.quitte(p39_co2_dem) %>% + rename(co2_dem = value, tech = all_te) %>% + select(region, period, tech, co2_dem) %>% + # from GtC CO2/TWa(H2) to tCO2/MWh(H2) + mutate(co2_dem = co2_dem * 3.66 / s_twa2mwh * 1e9) - if (getSets(vm_co2capture)[[3]] == "emiAll") { + ### 13. calculate share stored carbon from capture carbon + vm_co2CCS <- readGDX(gdx, "vm_co2CCS", field = "l", restore_zeros = FALSE) + vm_co2capture <- readGDX(gdx, "vm_co2capture", field = "l", restore_zeros = FALSE) + + if (getSets(vm_co2capture)[[3]] == "emiAll") { sel_vm_co2capture_cco2 <- mselect(vm_co2capture, emiAll = "cco2") - } else { + } else { sel_vm_co2capture_cco2 <- mselect(vm_co2capture, all_enty = "cco2") - } + } - p_share_carbonCapture_stor <- ( - vm_co2CCS[, , "cco2.ico2.ccsinje.1"] - / dimSums(sel_vm_co2capture_cco2, dim = 3) - ) - p_share_carbonCapture_stor[is.na(p_share_carbonCapture_stor)] <- 1 + p_share_carbonCapture_stor <- ( + vm_co2CCS[, , "cco2.ico2.ccsinje.1"] + / dimSums(sel_vm_co2capture_cco2, dim = 3) + ) + p_share_carbonCapture_stor[is.na(p_share_carbonCapture_stor)] <- 1 - df.CO2StoreShare <- as.quitte(p_share_carbonCapture_stor) %>% - rename(CO2StoreShare = value) %>% - select(region, period, CO2StoreShare) + df.CO2StoreShare <- as.quitte(p_share_carbonCapture_stor) %>% + rename(CO2StoreShare = value) %>% + select(region, period, CO2StoreShare) - # Note: This is assuming that the CO2 capture to storage share stays constant over time. - # Still to do: calculate average over lifetime of plant + # Note: This is assuming that the CO2 capture to storage share stays constant over time. + # Still to do: calculate average over lifetime of plant -### Calculate cost of second fuel ---- + ### Calculate cost of second fuel ---- - # for technologies with coupled production - # (pm_prodCouple: negative values mean own consumption, positive values mean coupled product) + # for technologies with coupled production + # (pm_prodCouple: negative values mean own consumption, positive values mean coupled product) - # mapping of SE technologies that require second fuel input (own consumption) - pc2te <- readGDX(gdx, "pc2te") - # second fuel production per unit output of technology - pm_prodCouple <- readGDX(gdx, "pm_prodCouple", restore_zeros = FALSE) + # mapping of SE technologies that require second fuel input (own consumption) + pc2te <- readGDX(gdx, "pc2te") + # second fuel production per unit output of technology + pm_prodCouple <- readGDX(gdx, "pm_prodCouple", restore_zeros = FALSE) - # secfuel.prod (share of coupled production per unit output), - # secfuel.price (price of coupled product) - df.secfuel <- as.quitte(pm_prodCouple) %>% - rename(tech = all_te, fuel = all_enty, secfuel = all_enty2, secfuel.prod = value) %>% - select(region, tech, fuel, secfuel, secfuel.prod) %>% - right_join(df.Fuel.Price, by = c("region", "fuel")) %>% - rename(secfuel.price = fuel.price) + # secfuel.prod (share of coupled production per unit output), + # secfuel.price (price of coupled product) + df.secfuel <- as.quitte(pm_prodCouple) %>% + rename(tech = all_te, fuel = all_enty, secfuel = all_enty2, secfuel.prod = value) %>% + select(region, tech, fuel, secfuel, secfuel.prod) %>% + right_join(df.Fuel.Price, by = c("region", "fuel")) %>% + rename(secfuel.price = fuel.price) -### Read curtailment share ----- + ### Read curtailment share ----- # curtailment share is needed to calculate curtailment cost of VREs: # curtailment cost = LCOE(VRE) * curtshare/((1-curtShare)), @@ -1324,12 +1266,12 @@ df.co2price.weighted <- df.pomeg.expand %>% curt_share <- v32_curt[, , teVRE] / vm_prodSe[, , teVRE] df.curtShare <- as.quitte(curt_share) %>% - rename(tech = all_te, curtShare = value) %>% - select(region, period, tech, curtShare) + rename(tech = all_te, curtShare = value) %>% + select(region, period, tech, curtShare) -### Calculate CCS tax ---- + ### Calculate CCS tax ---- # following q21_taxrevCCS vm_co2CCS <- readGDX(gdx, "vm_co2CCS", field = "l", restore_zeros = FALSE) @@ -1356,20 +1298,20 @@ df.co2price.weighted <- df.pomeg.expand %>% df.CCStax <- as.quitte(CCStax) %>% - rename(tech = all_te1, CCStax.cost = value) %>% - select(region, period, tech, CCStax.cost) + rename(tech = all_te1, CCStax.cost = value) %>% + select(region, period, tech, CCStax.cost) # Note: CCS tax still to fix, set temporarily to 0 df.CCStax <- df.CCStax %>% - mutate(CCStax.cost = 0) + mutate(CCStax.cost = 0) -### Read Flexibility Tax ---- + ### Read Flexibility Tax ---- cm_FlexTax <- readGDX(gdx, "cm_flex_tax") v32_flexPriceShare <- readGDX(gdx, "v32_flexPriceShare", field = "l", restore_zeros = FALSE) - if (is.null(v32_flexPriceShare) | is.null(cm_FlexTax)) { + if (is.null(v32_flexPriceShare) || is.null(cm_FlexTax)) { v32_flexPriceShare <- vm_costTeCapital v32_flexPriceShare[, , ] <- 1 } else { @@ -1380,11 +1322,11 @@ df.co2price.weighted <- df.pomeg.expand %>% } df.flexPriceShare <- as.quitte(v32_flexPriceShare) %>% - rename(tech = all_te, FlexPriceShare = value) %>% - select(region, period, tech, FlexPriceShare) + rename(tech = all_te, FlexPriceShare = value) %>% + select(region, period, tech, FlexPriceShare) -### Read SE Tax for Electrolysis ---- + ### Read SE Tax for Electrolysis ---- # read SE tax for electrolysis from GDX v21_tau_SE_tax <- readGDX(gdx, "v21_tau_SE_tax", field = "l", restore_zeros = FALSE, react = "silent") @@ -1395,62 +1337,52 @@ df.co2price.weighted <- df.pomeg.expand %>% } df.tau_SE_tax <- as.quitte(v21_tau_SE_tax) %>% - rename(tech = all_te, tau_SE_tax = value) %>% - select(region, period, tech, tau_SE_tax) %>% - # convert to USD2015/MWh - mutate(tau_SE_tax = s_usd2017t2015 / as.vector(s_twa2mwh) * 1e12 * tau_SE_tax) - - - - -### Read Final Energy Taxes ---- + rename(tech = all_te, tau_SE_tax = value) %>% + select(region, period, tech, tau_SE_tax) %>% + # convert to USD2015/MWh + mutate(tau_SE_tax = s_usd2017t2015 / as.vector(s_twa2mwh) * 1e12 * tau_SE_tax) + ### Read Final Energy Taxes ---- - - entyFe2Sector <- readGDX(gdx, "entyFe2Sector") sector.mapping <- c("build" = "buildings", "indst" = "industry", "trans" = "transport") - pm_tau_fe_tax <- readGDX(gdx, c("p21_tau_fe_tax", "pm_tau_fe_tax"), restore_zeros = FALSE) pm_tau_fe_sub <- readGDX(gdx, c("p21_tau_fe_sub", "pm_tau_fe_sub"), restore_zeros = FALSE) df.taxrate <- as.quitte(pm_tau_fe_tax * s_usd2017t2015 / s_twa2mwh * 1e12) %>% - rename(taxrate = value) + rename(taxrate = value) df.subrate <- as.quitte(pm_tau_fe_sub * s_usd2017t2015 / s_twa2mwh * 1e12) %>% - rename(subrate = value) + rename(subrate = value) df.FEtax <- df.taxrate %>% - full_join(df.subrate) %>% - # set NA to 0 - mutate(subrate = ifelse(is.na(subrate), 0, subrate), - taxrate = ifelse(is.na(taxrate), 0, taxrate)) %>% - # taxrate + subsidy rate = net FE tax - mutate(FEtax = taxrate + subrate) %>% - filter(emi_sectors %in% names(sector.mapping)) %>% - revalue.levels(emi_sectors = sector.mapping) %>% - rename(sector = emi_sectors, output = all_enty) %>% - select(region, period, sector, output, FEtax) + full_join(df.subrate) %>% + # set NA to 0 + mutate(subrate = ifelse(is.na(subrate), 0, subrate), + taxrate = ifelse(is.na(taxrate), 0, taxrate)) %>% + # taxrate + subsidy rate = net FE tax + mutate(FEtax = taxrate + subrate) %>% + filter(emi_sectors %in% names(sector.mapping)) %>% + revalue.levels(emi_sectors = sector.mapping) %>% + rename(sector = emi_sectors, output = all_enty) %>% + select(region, period, sector, output, FEtax) - -### Read H2 Phase-in cost for buildings and industry ---- + ### Read H2 Phase-in cost for buildings and industry ---- ### for buildings and industry (calculate average cost for simplicity, not marginal) - v37_costAddTeInvH2 <- readGDX(gdx, "v37_costAddTeInvH2", field = "l", restore_zeros = FALSE, react = "silent") v36_costAddTeInvH2 <- readGDX(gdx, "v36_costAddTeInvH2", field = "l", restore_zeros = FALSE, react = "silent") - df.AddTeInvH2 <- NULL if (!is.null(v36_costAddTeInvH2)) { df.AddTeInvH2Build <- as.quitte(v36_costAddTeInvH2[, ttot_from2005, "tdh2s"] / collapseNames(dimSums(vm_demFeSector[, ttot_from2005, "seh2.feh2s.build"], dim = 3.4, na.rm = TRUE)) / s_twa2mwh * 1e12 * s_usd2017t2015) %>% - mutate(value = ifelse(is.infinite(value), 0, value)) %>% - mutate(emi_sectors = "buildings") %>% - select(region, period, all_te, emi_sectors, value) %>% - rename(AddH2TdCost = value, sector = emi_sectors, tech = all_te) + mutate(value = ifelse(is.infinite(value), 0, value)) %>% + mutate(emi_sectors = "buildings") %>% + select(region, period, all_te, emi_sectors, value) %>% + rename(AddH2TdCost = value, sector = emi_sectors, tech = all_te) df.AddTeInvH2 <- rbind(df.AddTeInvH2, df.AddTeInvH2Build) } @@ -1468,168 +1400,168 @@ df.co2price.weighted <- df.pomeg.expand %>% - # Join all data for marginal LCOE calculation ---- - - ### create table with all parameters needed for LCOE calculation - df.LCOE <- df.CAPEX %>% - left_join(df.OMF, by = c("region", "tech")) %>% - left_join(df.OMV, by = c("region", "tech")) %>% - left_join(df.CapFac, by = c("region", "period", "tech")) %>% - left_join(df.lifetime, by = "tech") %>% - left_join(df.margAdjCostInv, by = c("region", "period", "tech")) %>% - left_join(df.Fuel.Price, by = c("region", "period", "fuel")) %>% - left_join(df.co2price, by = c("region", "period")) %>% - left_join(df.fuel.price.weighted, by = c("region", "period", "tech")) %>% - left_join(df.co2price.weighted, by = c("region", "period", "tech")) %>% - left_join(df.eff, by = c("region", "period", "tech")) %>% - left_join(df.emiFac, by = c("region", "tech")) %>% - left_join(df.emifac.se2fe, by = c("region", "tech")) %>% - left_join(df.Co2.Capt.Price, by = c("region", "period")) %>% - left_join(df.co2_dem, by = c("region", "period", if (module2realisation["CCU", 2] == "on") "tech")) %>% - left_join(df.CO2StoreShare, by = c("region", "period")) %>% - left_join(df.secfuel, by = c("region", "period", "tech", "fuel")) %>% - left_join(df.curtShare, by = c("region", "period", "tech")) %>% - left_join(df.CCStax, by = c("region", "period", "tech")) %>% - left_join(df.flexPriceShare, by = c("region", "period", "tech")) %>% - left_join(df.tau_SE_tax, by = c("region", "period", "tech")) %>% - left_join(df.FEtax, relationship = "many-to-many", by = c("region", "period", "output")) %>% - left_join(df.AddTeInvH2, by = c("region", "period", "tech", "sector")) %>% - # filter to only have LCOE technologies - filter(tech %in% c(te_LCOE)) - - - # only retain unique region, period, tech combinations - df.LCOE <- df.LCOE %>% - unique(by = c("region", "period", "tech", "sector")) - - - # replace NA by 0 in certain columns - # columns where NA should be replaced by 0 - col.NA.zero <- c("OMF", "OMV", "AdjCost", "co2.price", "co2.price.weighted", "fuel.price", "fuel.price.weighted", "co2_dem", "emiFac.se2fe", "Co2.Capt.Price", - "secfuel.prod", "secfuel.price", "curtShare", "CCStax.cost", "FEtax", "AddH2TdCost", "tau_SE_tax") - df.LCOE[, col.NA.zero][is.na(df.LCOE[, col.NA.zero])] <- 0 - - # replace NA by 1 in certain columns - # columns where NA should be replaced by 1 - col.NA.one <- c("FlexPriceShare") - df.LCOE[, col.NA.one][is.na(df.LCOE[, col.NA.one])] <- 1 - - # replace NA for sectors by "supply-side" (for all SE generating technologies) - # Carbon management for all technologies handling CO2 - df.LCOE <- df.LCOE %>% - mutate(sector = ifelse(tech %in% c(ccs2te$all_te), - "carbon management", - sector)) %>% - mutate(sector = ifelse(tech %in% c(pe2se$all_te, - se2se$all_te), - "supply-side", - sector)) %>% - filter(!is.na(sector)) - - - - - ### unit conversion and data preparation before LCOE calculation - df.LCOE <- df.LCOE %>% - # remove some unnecessary columns - select(-model, -scenario, -variable, -unit) %>% - # unit conversions for CAPEX and OMV cost, adjustment cost - # conversion from tr USD 2017/TW to USD2015/kW - # in case of CCS technologies convert from tr USD2017/GtC to USD2015/tCO2 - mutate(CAPEX = ifelse(tech %in% ccs2te$all_te, - # CCS technology unit conversion - CAPEX * s_usd2017t2015 * 1e3 / 3.66, - # energy technology unit conversion - CAPEX * s_usd2017t2015 * 1e3), - AdjCost = ifelse(tech %in% ccs2te$all_te, + # Join all data for marginal LCOE calculation ---- + + ### create table with all parameters needed for LCOE calculation + df.LCOE <- df.CAPEX %>% + left_join(df.OMF, by = c("region", "tech")) %>% + left_join(df.OMV, by = c("region", "tech")) %>% + left_join(df.CapFac, by = c("region", "period", "tech")) %>% + left_join(df.lifetime, by = "tech") %>% + left_join(df.margAdjCostInv, by = c("region", "period", "tech")) %>% + left_join(df.Fuel.Price, by = c("region", "period", "fuel")) %>% + left_join(df.co2price, by = c("region", "period")) %>% + left_join(df.fuel.price.weighted, by = c("region", "period", "tech")) %>% + left_join(df.co2price.weighted, by = c("region", "period", "tech")) %>% + left_join(df.eff, by = c("region", "period", "tech")) %>% + left_join(df.emiFac, by = c("region", "tech")) %>% + left_join(df.emifac.se2fe, by = c("region", "tech")) %>% + left_join(df.Co2.Capt.Price, by = c("region", "period")) %>% + left_join(df.co2_dem, by = c("region", "period", if (module2realisation["CCU", 2] == "on") "tech")) %>% + left_join(df.CO2StoreShare, by = c("region", "period")) %>% + left_join(df.secfuel, by = c("region", "period", "tech", "fuel")) %>% + left_join(df.curtShare, by = c("region", "period", "tech")) %>% + left_join(df.CCStax, by = c("region", "period", "tech")) %>% + left_join(df.flexPriceShare, by = c("region", "period", "tech")) %>% + left_join(df.tau_SE_tax, by = c("region", "period", "tech")) %>% + left_join(df.FEtax, relationship = "many-to-many", by = c("region", "period", "output")) %>% + left_join(df.AddTeInvH2, by = c("region", "period", "tech", "sector")) %>% + # filter to only have LCOE technologies + filter(tech %in% c(te_LCOE)) + + + # only retain unique region, period, tech combinations + df.LCOE <- df.LCOE %>% + unique(by = c("region", "period", "tech", "sector")) + + + # replace NA by 0 in certain columns + # columns where NA should be replaced by 0 + col.NA.zero <- c("OMF", "OMV", "AdjCost", "co2.price", "co2.price.weighted", "fuel.price", "fuel.price.weighted", "co2_dem", "emiFac.se2fe", "Co2.Capt.Price", + "secfuel.prod", "secfuel.price", "curtShare", "CCStax.cost", "FEtax", "AddH2TdCost", "tau_SE_tax") + df.LCOE[, col.NA.zero][is.na(df.LCOE[, col.NA.zero])] <- 0 + + # replace NA by 1 in certain columns + # columns where NA should be replaced by 1 + col.NA.one <- c("FlexPriceShare") + df.LCOE[, col.NA.one][is.na(df.LCOE[, col.NA.one])] <- 1 + + # replace NA for sectors by "supply-side" (for all SE generating technologies) + # Carbon management for all technologies handling CO2 + df.LCOE <- df.LCOE %>% + mutate(sector = ifelse(tech %in% c(ccs2te$all_te), + "carbon management", + sector)) %>% + mutate(sector = ifelse(tech %in% c(pe2se$all_te, + se2se$all_te), + "supply-side", + sector)) %>% + filter(!is.na(sector)) + + + + + ### unit conversion and data preparation before LCOE calculation + df.LCOE <- df.LCOE %>% + # remove some unnecessary columns + select(-model, -scenario, -variable, -unit) %>% + # unit conversions for CAPEX and OMV cost, adjustment cost + # conversion from tr USD 2017/TW to USD2015/kW + # in case of CCS technologies convert from tr USD2017/GtC to USD2015/tCO2 + mutate(CAPEX = ifelse(tech %in% ccs2te$all_te, # CCS technology unit conversion - AdjCost * s_usd2017t2015 * 1e3 / 3.66, + CAPEX * s_usd2017t2015 * 1e3 / 3.66, # energy technology unit conversion - AdjCost * s_usd2017t2015 * 1e3)) %>% - # conversion from tr USD 2017/TWa to USD2015/MWh - # in case of CCS technologies convert from tr USD2017/GtC to USD2015/tCO2 - mutate(OMV = ifelse(tech %in% ccs2te$all_te, - # CCS technology unit conversion - OMV * s_usd2017t2015 * 1e3 / 3.66, - # energy technology unit conversion - OMV * s_usd2017t2015 / as.numeric(s_twa2mwh) * 1e12)) %>% - # share of stored carbon from captured carbon is only relevant for CCS technologies, others -> 1 - mutate(CO2StoreShare = ifelse(tech %in% teCCS, CO2StoreShare, 1)) %>% - # calculate annuity factor for annualizing investment cost over lifetime - mutate(annuity.fac = r * (1 + r)^lifetime / (-1 + (1 + r)^lifetime)) - - -# LCOE Calculation (marginal) ---- - - - df.LCOE <- df.LCOE %>% - # investment cost LCOE in USD/MWh or USD/tCO2 - mutate(`Investment Cost` = ifelse(tech %in% ccs2te$all_te, - # CCS technology, CAPEX in USD/tCO2 - CAPEX * annuity.fac / CapFac, - # energy technology, CAPEX in USD/kW(out) - CAPEX * annuity.fac / (CapFac * 8760) * 1e3)) %>% - # OMF cost LCOE in USD/MWh, OMF are defined as share of CAPEX - mutate(`OMF Cost` = ifelse(tech %in% ccs2te$all_te, - # CCS technology, CAPEX in USD/tCO2 - CAPEX * OMF / CapFac, - # energy technology, CAPEX in USD/kW(out) - CAPEX * OMF / (CapFac * 8760) * 1e3)) %>% - mutate(`OMV Cost` = OMV) %>% - # adjustment cost LCOE in USD/MWh or USD/tCO2 - # (parallel to investment cost calculation) - mutate(`Adjustment Cost` = ifelse(tech %in% ccs2te$all_te, - # CCS technology, CAPEX in USD/tCO2 - AdjCost * annuity.fac / CapFac, - # energy technology, CAPEX in USD/kW(out) - AdjCost * annuity.fac / (CapFac * 8760) * 1e3)) %>% - # Fuel Cost - # # Fuel cost with fuel price of time step for which LCOE are calculated - mutate(`Fuel Cost (time step prices)` = fuel.price / eff) %>% - # Fuel cost with weighted average fuel price over plant lifetime - mutate(`Fuel Cost (intertemporal prices)` = fuel.price.weighted / eff) %>% - # CO2 Tax cost - # CO2 Tax cost on SE level refer to (supply-side) emissions of pe2se technologies - # CO2 Tax cost on FE level refer to (demand-side) emissions of FE carriers - # # CO2 Tax cost with co2 price of time step for which LCOE are calculated - mutate(`CO2 Tax Cost (time step prices)` = co2.price * (emiFac / eff) * CO2StoreShare) %>% - # CO2 Tax cost with weighted average co2 price over plant lifetime - # These are the CO2 tax cost that feature the total LCOE calculate below - mutate(`CO2 Tax Cost (intertemporal prices)` = co2.price.weighted * (emiFac / eff) * CO2StoreShare) %>% - mutate(`CO2 Provision Cost` = Co2.Capt.Price * co2_dem) %>% - # fuel cost of second fuel if technology has two inputs or outputs - # is positive for cost of second input - # is negative for benefit of a second output - mutate(`Second Fuel Cost` = -(secfuel.prod * secfuel.price)) %>% - # curtailment cost are generation LCOE of VRE technologies of curtailed generation - mutate(`Curtailment Cost` = curtShare / (1 - curtShare) * (`Investment Cost` + `OMF Cost` + `OMV Cost`)) %>% - # CCS Tax cost as defined in 21_tax module - mutate(`CCS Tax Cost` = CCStax.cost) %>% - # Flex Tax benefit for electrolysis - # FlexPriceShare denotes share of the electricity price that electrolysis sees - mutate(`Flex Tax` = -(1 - FlexPriceShare) * `Fuel Cost (time step prices)`) %>% - # SE tax for electrolysis, calculates fuel cost increase due to taxes and grid fees on electricity going into electrolysis - mutate(`SE Tax` = tau_SE_tax / eff) %>% - # se2fe technologies come with FE tax - mutate(`FE Tax` = FEtax, - # FE H2 has some additional t&d cost at low H2 shares (phase-in cost) in REMIND - `Additional H2 t&d Cost` = AddH2TdCost) %>% - # calculate total LCOE by adding all components - mutate( - # Total LCOE with fuel cost and co2 tax cost based on fuel prices and carbon prices of time step for which LCOE are calculated - `Total LCOE (time step prices)` = `Investment Cost` + `OMF Cost` + `OMV Cost` + `Adjustment Cost` + `Fuel Cost (time step prices)` + `CO2 Tax Cost (time step prices)` + - `CO2 Provision Cost` + `Second Fuel Cost` + `CCS Tax Cost` + `Curtailment Cost` + `Flex Tax` + `SE Tax` + `FE Tax` + `Additional H2 t&d Cost`, - # Total LCOE with fuel cost and co2 tax cost based on fuel prices and carbon prices that are intertemporally weighted and averaged over the plant lifetime - `Total LCOE (intertemporal prices)` = `Investment Cost` + `OMF Cost` + `OMV Cost` + `Adjustment Cost` + `Fuel Cost (intertemporal prices)` + `CO2 Tax Cost (intertemporal prices)` + - `CO2 Provision Cost` + `Second Fuel Cost` + `CCS Tax Cost` + `Curtailment Cost` + `Flex Tax` + `SE Tax` + `FE Tax` + `Additional H2 t&d Cost`) - - - # Levelized Cost of UE in Buildings Putty Realization ---- - - -# Transform LCOE to output format ---- - - # transform marginal LCOE to mif output format + CAPEX * s_usd2017t2015 * 1e3), + AdjCost = ifelse(tech %in% ccs2te$all_te, + # CCS technology unit conversion + AdjCost * s_usd2017t2015 * 1e3 / 3.66, + # energy technology unit conversion + AdjCost * s_usd2017t2015 * 1e3)) %>% + # conversion from tr USD 2017/TWa to USD2015/MWh + # in case of CCS technologies convert from tr USD2017/GtC to USD2015/tCO2 + mutate(OMV = ifelse(tech %in% ccs2te$all_te, + # CCS technology unit conversion + OMV * s_usd2017t2015 * 1e3 / 3.66, + # energy technology unit conversion + OMV * s_usd2017t2015 / as.numeric(s_twa2mwh) * 1e12)) %>% + # share of stored carbon from captured carbon is only relevant for CCS technologies, others -> 1 + mutate(CO2StoreShare = ifelse(tech %in% teCCS, CO2StoreShare, 1)) %>% + # calculate annuity factor for annualizing investment cost over lifetime + mutate(annuity.fac = r * (1 + r)^lifetime / (-1 + (1 + r)^lifetime)) + + + # LCOE Calculation (marginal) ---- + + + df.LCOE <- df.LCOE %>% + # investment cost LCOE in USD/MWh or USD/tCO2 + mutate(`Investment Cost` = ifelse(tech %in% ccs2te$all_te, + # CCS technology, CAPEX in USD/tCO2 + CAPEX * annuity.fac / CapFac, + # energy technology, CAPEX in USD/kW(out) + CAPEX * annuity.fac / (CapFac * 8760) * 1e3)) %>% + # OMF cost LCOE in USD/MWh, OMF are defined as share of CAPEX + mutate(`OMF Cost` = ifelse(tech %in% ccs2te$all_te, + # CCS technology, CAPEX in USD/tCO2 + CAPEX * OMF / CapFac, + # energy technology, CAPEX in USD/kW(out) + CAPEX * OMF / (CapFac * 8760) * 1e3)) %>% + mutate(`OMV Cost` = OMV) %>% + # adjustment cost LCOE in USD/MWh or USD/tCO2 + # (parallel to investment cost calculation) + mutate(`Adjustment Cost` = ifelse(tech %in% ccs2te$all_te, + # CCS technology, CAPEX in USD/tCO2 + AdjCost * annuity.fac / CapFac, + # energy technology, CAPEX in USD/kW(out) + AdjCost * annuity.fac / (CapFac * 8760) * 1e3)) %>% + # Fuel Cost + # # Fuel cost with fuel price of time step for which LCOE are calculated + mutate(`Fuel Cost (time step prices)` = fuel.price / eff) %>% + # Fuel cost with weighted average fuel price over plant lifetime + mutate(`Fuel Cost (intertemporal prices)` = fuel.price.weighted / eff) %>% + # CO2 Tax cost + # CO2 Tax cost on SE level refer to (supply-side) emissions of pe2se technologies + # CO2 Tax cost on FE level refer to (demand-side) emissions of FE carriers + # # CO2 Tax cost with co2 price of time step for which LCOE are calculated + mutate(`CO2 Tax Cost (time step prices)` = co2.price * (emiFac / eff) * CO2StoreShare) %>% + # CO2 Tax cost with weighted average co2 price over plant lifetime + # These are the CO2 tax cost that feature the total LCOE calculate below + mutate(`CO2 Tax Cost (intertemporal prices)` = co2.price.weighted * (emiFac / eff) * CO2StoreShare) %>% + mutate(`CO2 Provision Cost` = Co2.Capt.Price * co2_dem) %>% + # fuel cost of second fuel if technology has two inputs or outputs + # is positive for cost of second input + # is negative for benefit of a second output + mutate(`Second Fuel Cost` = -(secfuel.prod * secfuel.price)) %>% + # curtailment cost are generation LCOE of VRE technologies of curtailed generation + mutate(`Curtailment Cost` = curtShare / (1 - curtShare) * (`Investment Cost` + `OMF Cost` + `OMV Cost`)) %>% + # CCS Tax cost as defined in 21_tax module + mutate(`CCS Tax Cost` = CCStax.cost) %>% + # Flex Tax benefit for electrolysis + # FlexPriceShare denotes share of the electricity price that electrolysis sees + mutate(`Flex Tax` = -(1 - FlexPriceShare) * `Fuel Cost (time step prices)`) %>% + # SE tax for electrolysis, calculates fuel cost increase due to taxes and grid fees on electricity going into electrolysis + mutate(`SE Tax` = tau_SE_tax / eff) %>% + # se2fe technologies come with FE tax + mutate(`FE Tax` = FEtax, + # FE H2 has some additional t&d cost at low H2 shares (phase-in cost) in REMIND + `Additional H2 t&d Cost` = AddH2TdCost) %>% + # calculate total LCOE by adding all components + mutate( + # Total LCOE with fuel cost and co2 tax cost based on fuel prices and carbon prices of time step for which LCOE are calculated + `Total LCOE (time step prices)` = `Investment Cost` + `OMF Cost` + `OMV Cost` + `Adjustment Cost` + `Fuel Cost (time step prices)` + `CO2 Tax Cost (time step prices)` + + `CO2 Provision Cost` + `Second Fuel Cost` + `CCS Tax Cost` + `Curtailment Cost` + `Flex Tax` + `SE Tax` + `FE Tax` + `Additional H2 t&d Cost`, + # Total LCOE with fuel cost and co2 tax cost based on fuel prices and carbon prices that are intertemporally weighted and averaged over the plant lifetime + `Total LCOE (intertemporal prices)` = `Investment Cost` + `OMF Cost` + `OMV Cost` + `Adjustment Cost` + `Fuel Cost (intertemporal prices)` + `CO2 Tax Cost (intertemporal prices)` + + `CO2 Provision Cost` + `Second Fuel Cost` + `CCS Tax Cost` + `Curtailment Cost` + `Flex Tax` + `SE Tax` + `FE Tax` + `Additional H2 t&d Cost`) + + + # Levelized Cost of UE in Buildings Putty Realization ---- + + + # Transform LCOE to output format ---- + + # transform marginal LCOE to mif output format df.LCOE.out <- df.LCOE %>% select(region, period, tech, output, sector, `Investment Cost`, `Adjustment Cost`, `OMF Cost`, `OMV Cost`, @@ -1639,7 +1571,7 @@ df.co2price.weighted <- df.pomeg.expand %>% `CCS Tax Cost`, `Flex Tax`, `SE Tax`, `FE Tax`, `Additional H2 t&d Cost`, `Total LCOE (time step prices)`, `Total LCOE (intertemporal prices)` - ) %>% + ) %>% gather(cost, value, -region, -period, -tech, -output, -sector) %>% mutate(unit = ifelse(tech %in% ccs2te$all_te, "US$2015/tCO2", @@ -1657,21 +1589,21 @@ df.co2price.weighted <- df.pomeg.expand %>% # bind to previous calculations (if there are) LCOE.out <- mbind(LCOE.out, LCOE.mar.out) - } + } - ### calculate global average LCOE for region "World" - LCOE.out.inclGlobal <- new.magpie(c(getRegions(LCOE.out), "GLO"), getYears(LCOE.out), getNames(LCOE.out)) - getSets(LCOE.out.inclGlobal) <- getSets(LCOE.out) - LCOE.out.inclGlobal[getRegions(LCOE.out), , ] <- LCOE.out - LCOE.out.inclGlobal["GLO", , ] <- dimSums(LCOE.out, dim = 1) / length(getRegions(LCOE.out)) + ### calculate global average LCOE for region "World" + LCOE.out.inclGlobal <- new.magpie(c(getRegions(LCOE.out), "GLO"), getYears(LCOE.out), getNames(LCOE.out)) + getSets(LCOE.out.inclGlobal) <- getSets(LCOE.out) + LCOE.out.inclGlobal[getRegions(LCOE.out), , ] <- LCOE.out + LCOE.out.inclGlobal["GLO", , ] <- dimSums(LCOE.out, dim = 1) / length(getRegions(LCOE.out)) - if (output.type %in% c("marginal detail")) { - return(df.LCOE) - } else { - return(LCOE.out.inclGlobal) - } + if (output.type %in% c("marginal detail")) { + return(df.LCOE) + } else { + return(LCOE.out.inclGlobal) + } - return(LCOE.out) + return(LCOE.out) }