diff --git a/DESCRIPTION b/DESCRIPTION index 3ec8795..878bff5 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -36,7 +36,8 @@ Imports: rlang, shiny, tidyr, - trafficlight + trafficlight, + ggpattern Suggests: covr, gdxrrw, diff --git a/NAMESPACE b/NAMESPACE index 6f29175..cca1eeb 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -3,6 +3,7 @@ export(extractVariableGroups) export(getPlotData) export(mipArea) +export(mipAreaPattern) export(mipBarYearData) export(mipIterations) export(mipLineHistorical) @@ -44,6 +45,9 @@ importFrom(dplyr,summarise) importFrom(dplyr,summarize) importFrom(dplyr,sym) importFrom(dplyr,ungroup) +importFrom(ggpattern,geom_area_pattern) +importFrom(ggpattern,scale_pattern_manual) +importFrom(ggpattern,scale_pattern_spacing_manual) importFrom(ggplot2,"%+replace%") importFrom(ggplot2,aes) importFrom(ggplot2,aes_) diff --git a/R/mipAreaPattern.R b/R/mipAreaPattern.R new file mode 100644 index 0000000..7c269c6 --- /dev/null +++ b/R/mipAreaPattern.R @@ -0,0 +1,240 @@ +#' Generic area plot function. Automatically creates facet grid from data. Optionally adds total line. Supports patterns. +#' +#' @param x Data to plot. Allowed data formats: magpie or quitte. NOTE: To ensure correct conversion to quitte objects, +#' the dimension that contains the variables must have one of the following names: variable, scenario, or model. +#' @param stack_priority Name of column you want to stack. If you provide more than one column name the +#' function will scan the columns in the given order and use the first dimension for stacking that has +#' more than one element. +#' @param total total data to plot. Allowed inputs: magpie, quitte or boolean. If total data is +#' provided by user in magpie or quitte format it will be added to the plot. If user sets total to +#' TRUE total will be calculated by the function and added to the plot. If total is FALSE the plot +#' will ignore it. +#' @param scales scales can be fixed ("fixed", default), free ("free"), or free in one dimension ("free_x", "free_y")? +#' @param shorten Shorten variable names (default is TRUE) by removing categories only if they are identical (for short +#' names in the legend) +#' @param hist Historical data. Allowed data formats: magpie or quitte. NOTE: To ensure correct conversion to quitte +#' objects, the dimension that contains the variables must have one of the following names: variable, scenario, model. +#' @param hist_source If there are multiple historical sources the name of the source that you want to be plotted. +#' @param patternDensity Sets globally the density of all patterns +#' @param patternKeyScale Sets globally the size of all patterns in the legend items +#' @author David Klein, Jan Philipp Dietrich, Paul Effing +#' @section Example Plot: +#' \if{html}{\figure{mipAreaPattern.png}{example plot}} +#' @examples +#' p <- mipAreaPattern(x = mip_example_data) +#' # create plot with best-guess design (internally using theme_mip(size=12)) +#' p <- mipAreaPattern(mip_example_data) +#' # override default theme with theme_grey and move legend to top +#' library(ggplot2) +#' p <- p + theme_grey() + theme(legend.position = "top") +#' # go back to theme_mip and increase font size +#' p <- p + theme_mip(size = 18) +#' # change facetting +#' p <- p + facet_grid(region ~ scenario) +#' +#' # patterns and color scales can be added manually here: +#' # p <- p + scale_pattern_manual(values = patternValues, +#' labels = labels) + +#' # p <- p + scale_pattern_spacing_manual(values= spacingValues, +#' labels = labels)+ +#' # p <- p + scale_fill_manual(values=colorFillValues, +#' labels = labels) +#' @importFrom magclass is.magpie getSets +#' @importFrom quitte is.quitte +#' @importFrom ggplot2 ggplot aes_ geom_line scale_linetype_discrete +#' facet_wrap facet_grid theme scale_fill_manual xlab expand_limits +#' @importFrom dplyr group_by summarise ungroup +#' @importFrom rlang .data +#' @importFrom ggpattern geom_area_pattern scale_pattern_manual scale_pattern_spacing_manual +#' @export +mipAreaPattern <- function(x, stack_priority = c("variable", "region"), total = TRUE, scales = "fixed", shorten = TRUE, #nolint + hist = NULL, hist_source = "first", patternDensity = 0.35, patternKeyScale =0.6) { #nolint + ############################################ + ###### P R E P A R E D A T A ########### + ############################################ + + # To ensure correct conversion to quitte objects, there should be at least + # one dimension named "variable" or "scenario" or "model" in MAgPIE objects. + if (is.magpie(x) & !any(c("variable", "model", "scenario") %in% getSets(x))) { + stop("MAgPIE objects need to have at least one dimension named 'variable' or 'model' or 'scenario'.") + } + + x <- as.quitte(x) + + # Add dummy scenario if data does not contain a scenario + # Otherwise selecting all scenarios that are not 'historicl' further down deletes ALL data + if (all(is.na(x$scenario))) x$scenario <- "default" + + # shorten variable names and calc ylab + if (shorten) x$variable <- shorten_legend(x$variable, identical_only = TRUE) + ylab <- paste0(sub(".$", "", attr(x$variable, "front")), attr(x$variable, "back")) + # add unit + unit <- unique(as.character(x$unit)) + ylab <- paste0(ylab, " (", paste0(unit, collapse = " | "), ")") + + # Repeat the same for history + if (!is.null(hist)) { + if (is.magpie(hist) & !any(c("variable", "model", "scenario") %in% getSets(hist))) { + stop("MAgPIE objects with historical data need to have at least one dimension named 'variable' or 'model' or ", + "'scenario'.") + } + hist <- as.quitte(hist) + if (shorten) hist$variable <- shorten_legend(hist$variable, identical_only = TRUE) + # select historical data source + if (hist_source == "first") { + hist <- hist[hist$model == levels(hist$model)[1], ] + } else if (hist_source %in% levels(hist$model)) { + hist <- hist[hist$model == hist_source, ] + } else { + warning(paste0(hist_source, " could not be found in the historical data!")) + hist <- NULL + } + } + + ### + ### Find out which variables to stack and which to put to facet_grid + ### + + # count levels of the given columns + nLevels <- vapply(subset(x, select = c("variable", "region", "scenario", "model")), nlevels, integer(1)) + + # Find first dimension in stack_priority that has more than one element. + # Initialize dimToStack (this applies if if all dimensions have only one element) + dimToStack <- stack_priority[1] + for (s in stack_priority) { + if (nLevels[s] > 1) { + dimToStack <- s + break + } + } + + # find and sort dimension with more than one element, exclude dimToStack + # sort: to be able to build the interaction with the smallest number of resulting combinations (further down) + facets <- sort(nLevels[nLevels > 1]) + facets <- setdiff(names(facets), dimToStack) + + # Combine data and historical data into one object + if (!is.null(hist)) x <- rbind(x, hist) + + # if there are three facet dimensions that have more than one element combine the two + # smallest ones into the first one to be able to create a 2-D facet_grid later on + if (length(facets) == 3) { + x[, facets[1]] <- interaction(x[[facets[1]]], x[[facets[2]]]) + } + + # if not provided by user calculate total by summing over dimToStack + if (isTRUE(total)) { + dimToGroup <- setdiff(c("model", "scenario", "region", "variable", "unit", "period"), dimToStack) + total <- x %>% + group_by(.data[[dimToGroup[1]]], .data[[dimToGroup[2]]], .data[[dimToGroup[3]]], + .data[[dimToGroup[4]]], .data[[dimToGroup[5]]]) %>% + summarise(value = sum(.data[["value"]], na.rm = TRUE)) %>% + ungroup() + # add missing column dimToStack to make it convertable to quitte + total[, dimToStack] <- "Total" + } + + # convert total to quitte + if (!identical(FALSE, total)) total <- as.quitte(total) + + # separate positive and negative parts of data for area plot + tmp <- droplevels(x[x$scenario != "historical", ]) + + pos <- tmp + neg <- tmp + + pos$value <- ifelse(tmp$value >= 0, tmp$value, 0) + neg$value <- ifelse(tmp$value < 0, tmp$value, -1e-36) + + if (!is.null(hist)) { + tmp <- droplevels(x[x$scenario == "historical", ]) + postmp <- tmp + negtmp <- tmp + + postmp$value <- ifelse(tmp$value >= 0, tmp$value, 0) + negtmp$value <- ifelse(tmp$value < 0, tmp$value, -1e-36) + + posH <- NULL + negH <- NULL + + # repeat historical data as often as there are scenarios + # so that they will be plotted for each single scenario + for (l in levels(pos$scenario)) { + postmp$scenario <- factor(l) + negtmp$scenario <- factor(l) + + posH <- rbind(posH, postmp) + negH <- rbind(negH, negtmp) + } + } + + # split historical and model total + if (!identical(FALSE, total)) { + totalX <- droplevels(total[total$scenario != "historical", ]) + } + + if (!is.null(hist) & !identical(FALSE, total)) { + tottmp <- droplevels(total[total$scenario == "historical", ]) + # repeat historical total as often as there are scenarios + # so that it will be plotted for each single scenario + totalH <- NULL + for (l in levels(pos$scenario)) { + tottmp$scenario <- factor(l) + totalH <- rbind(totalH, tottmp) + } + } + + ############################################ + ############### P L O T ################## + ############################################ + + p <- ggplot() + + geom_area_pattern(data = pos, aes_(~period, ~value, pattern = as.formula(paste("~", dimToStack)), fill = as.formula(paste("~", dimToStack)), pattern_spacing = as.formula(paste("~", dimToStack))), pattern_density = patternDensity, pattern_key_scale_factor = patternKeyScale) + + geom_area_pattern(data = neg, aes_(~period, ~value, pattern = as.formula(paste("~", dimToStack)), fill = as.formula(paste("~", dimToStack)), pattern_spacing = as.formula(paste("~", dimToStack))), pattern_density = patternDensity, pattern_key_scale_factor = patternKeyScale) + + if (!is.null(hist)) { + p <- p + geom_area_pattern(data = posH, aes_(~period, ~value, pattern = as.formula(paste("~", dimToStack)), fill = as.formula(paste("~", dimToStack)), pattern_spacing = as.formula(paste("~", dimToStack))), pattern_density = patternDensity, pattern_key_scale_factor = patternKeyScale, alpha = 0.3) + p <- p + geom_area_pattern(data = negH, aes_(~period, ~value, pattern = as.formula(paste("~", dimToStack)), fill = as.formula(paste("~", dimToStack)), pattern_spacing = as.formula(paste("~", dimToStack))), pattern_density = patternDensity, pattern_key_scale_factor = patternKeyScale, alpha = 0.3) + } + + + # define facet_grid + if (length(facets) == 1) p <- p + facet_wrap(as.formula(paste("~", facets)), scales = scales) + if (length(facets) == 2) p <- p + facet_grid(as.formula(paste(facets[1], "~", facets[2])), scales = scales) + # facet 1 and 2 are combined in dim 1 + if (length(facets) == 3) p <- p + facet_grid(as.formula(paste(facets[1], "~", facets[3])), scales = scales) + + # add total to plot as black line + if (is.quitte(total)) { + p <- p + geom_line(data = totalX, aes_(~period, ~value, linetype = as.formula(paste("~", dimToStack))), + color = "#000000", size = 1) + p <- p + scale_linetype_discrete(labels = "Total", name = "") + if (!is.null(hist)) { + p <- p + geom_line(data = totalH, aes_(~period, ~value, linetype = as.formula(paste("~", dimToStack))), + color = "#000000", size = 1, alpha = 0.3) + } + } + + # plot settings + p <- p + xlab("Year") + p <- p + ylab(ylab) + + # update theme + p <- p + theme_minimal() + p <- p + theme_mip(size = 12) + p <- p + theme(axis.title.x = element_blank()) + + # If data that is to be stacked are not factors, convert it to factors. + # This is useful since we can use the same call of plotstyle as in other mip functions and thus + # get the same order of colors for elements that are not defined in plotstyle. + if (!is.factor(x[[dimToStack]])) x[[dimToStack]] <- factor(x[[dimToStack]], levels = unique(x[[dimToStack]])) + # because of conflicts with patterns, dont use plotstyle colours and labels by default + p <- p + scale_pattern_manual(values= rep("none", length(unique(x[[dimToStack]])))) + + scale_pattern_spacing_manual(values= rep(0.0, length(unique(x[[dimToStack]])))) + + # increase y-axis limits to hide all-zero data that was set to -1e-36 + p <- p + + expand_limits(y = c(-1, 1) * 1e-32) + + return(p) +} diff --git a/man/mipAreaPattern.Rd b/man/mipAreaPattern.Rd new file mode 100644 index 0000000..218f31d --- /dev/null +++ b/man/mipAreaPattern.Rd @@ -0,0 +1,76 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/mipAreaPattern.R +\name{mipAreaPattern} +\alias{mipAreaPattern} +\title{Generic area plot function. Automatically creates facet grid from data. Optionally adds total line. Supports patterns.} +\usage{ +mipAreaPattern( + x, + stack_priority = c("variable", "region"), + total = TRUE, + scales = "fixed", + shorten = TRUE, + hist = NULL, + hist_source = "first", + patternDensity = 0.35, + patternKeyScale = 0.6 +) +} +\arguments{ +\item{x}{Data to plot. Allowed data formats: magpie or quitte. NOTE: To ensure correct conversion to quitte objects, +the dimension that contains the variables must have one of the following names: variable, scenario, or model.} + +\item{stack_priority}{Name of column you want to stack. If you provide more than one column name the +function will scan the columns in the given order and use the first dimension for stacking that has +more than one element.} + +\item{total}{total data to plot. Allowed inputs: magpie, quitte or boolean. If total data is +provided by user in magpie or quitte format it will be added to the plot. If user sets total to +TRUE total will be calculated by the function and added to the plot. If total is FALSE the plot +will ignore it.} + +\item{scales}{scales can be fixed ("fixed", default), free ("free"), or free in one dimension ("free_x", "free_y")?} + +\item{shorten}{Shorten variable names (default is TRUE) by removing categories only if they are identical (for short +names in the legend)} + +\item{hist}{Historical data. Allowed data formats: magpie or quitte. NOTE: To ensure correct conversion to quitte +objects, the dimension that contains the variables must have one of the following names: variable, scenario, model.} + +\item{hist_source}{If there are multiple historical sources the name of the source that you want to be plotted.} + +\item{patternDensity}{Sets globally the density of all patterns} + +\item{patternKeyScale}{Sets globally the size of all patterns in the legend items} +} +\description{ +Generic area plot function. Automatically creates facet grid from data. Optionally adds total line. Supports patterns. +} +\section{Example Plot}{ + +\if{html}{\figure{mipAreaPattern.png}{example plot}} +} + +\examples{ +p <- mipAreaPattern(x = mip_example_data) +# create plot with best-guess design (internally using theme_mip(size=12)) +p <- mipAreaPattern(mip_example_data) +# override default theme with theme_grey and move legend to top +library(ggplot2) +p <- p + theme_grey() + theme(legend.position = "top") +# go back to theme_mip and increase font size +p <- p + theme_mip(size = 18) +# change facetting +p <- p + facet_grid(region ~ scenario) + +# patterns and color scales can be added manually here: +# p <- p + scale_pattern_manual(values = patternValues, + labels = labels) + +# p <- p + scale_pattern_spacing_manual(values= spacingValues, + labels = labels)+ +# p <- p + scale_fill_manual(values=colorFillValues, + labels = labels) +} +\author{ +David Klein, Jan Philipp Dietrich, Paul Effing +} diff --git a/mif.Rmd b/mif.Rmd new file mode 100644 index 0000000..e69de29