-
Notifications
You must be signed in to change notification settings - Fork 10
/
Exercise24.3.nb
1500 lines (1424 loc) · 61.3 KB
/
Exercise24.3.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 62588, 1491]
NotebookOptionsPosition[ 59661, 1381]
NotebookOutlinePosition[ 60069, 1399]
CellTagsIndexPosition[ 60026, 1396]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Some setting", "Chapter",
CellChangeTimes->{{3.7005852421286783`*^9, 3.70058525627621*^9}}],
Cell[CellGroupData[{
Cell["Data ", "Subchapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9},
3.700584843103354*^9, 3.7005851900193853`*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"xn", "=",
RowBox[{"{",
RowBox[{
RowBox[{"-", "27.02"}], ",", "3.57", ",", "8.191", ",", "9.898", ",",
"9.603", ",", "9.945", ",", "10.056"}], "}"}]}]], "Input",
CellChangeTimes->{{3.7003604678327627`*^9, 3.700360529072855*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "27.02`"}], ",", "3.57`", ",", "8.191`", ",", "9.898`", ",",
"9.603`", ",", "9.945`", ",", "10.056`"}], "}"}]], "Output",
CellChangeTimes->{3.700360530027831*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Sample mean", "Subchapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9}, {
3.700584843103354*^9, 3.700584860141548*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Mean", "[", "xn", "]"}], " "}]], "Input",
CellChangeTimes->{{3.70036053190208*^9, 3.7003605403456697`*^9}, {
3.700584773956094*^9, 3.70058478130865*^9}}],
Cell[BoxData["3.4632857142857145`"], "Output",
CellChangeTimes->{3.7003605410654716`*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Normalizing constant", "Subchapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9},
3.700584843103354*^9, {3.700584900448777*^9, 3.7005849074630203`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-", "\[Infinity]"}], "\[Infinity]"],
RowBox[{
RowBox[{"Exp", "[",
FractionBox[
RowBox[{
RowBox[{"-", "N"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Mu]", "-", "x"}], ")"}], "2"]}],
RowBox[{"2",
SuperscriptBox["\[Sigma]", "2"]}]], "]"}],
RowBox[{"\[DifferentialD]", "\[Mu]"}]}]}]], "Input",
CellChangeTimes->{{3.700376622450039*^9, 3.7003766997772427`*^9}}],
Cell[BoxData[
RowBox[{"ConditionalExpression", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]],
SqrtBox[
FractionBox["N",
SuperscriptBox["\[Sigma]", "2"]]]], ",",
RowBox[{
RowBox[{"Re", "[",
FractionBox["N",
SuperscriptBox["\[Sigma]", "2"]], "]"}], "\[GreaterEqual]", "0"}]}],
"]"}]], "Output",
CellChangeTimes->{
3.700376663954608*^9, {3.7003766973919067`*^9, 3.700376715156843*^9}}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Posterior distribution function w.o. normalizing constant", "Chapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9},
3.700584843103354*^9, {3.700584941047608*^9, 3.700584969268915*^9}}],
Cell[BoxData[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"],
RowBox[{
SuperscriptBox["\[Sigma]", "c"],
RowBox[{"Exp", "[",
RowBox[{
FractionBox[
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}],
RowBox[{"2",
SuperscriptBox["\[Sigma]", "2"]}]], "-",
FractionBox["\[Sigma]", "s"]}], "]"}],
RowBox[{"\[DifferentialD]", "\[Sigma]"}]}]}]], "Input",
CellChangeTimes->{{3.7003795092074614`*^9, 3.700379514195384*^9}, {
3.700383099299314*^9, 3.700383099990745*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ConditionalExpression", "[",
RowBox[{
RowBox[{
RowBox[{"11.976796597153522`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.050000000000000044`"}], ",",
"0.44999999999999996`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}], "-",
FractionBox[
RowBox[{"1.2220697972757049`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"1.55`", ",", "0.5`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]], ")"}], "0.55`"]], "-",
FractionBox[
RowBox[{"0.47443725266903375`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"2.05`", ",", "1.4999999999999998`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]], ")"}], "1.05`"]]}], ",",
RowBox[{
RowBox[{"Re", "[",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"], "]"}], ">", "0"}]}], "]"}],
"/.",
RowBox[{"x", "\[Rule]", "10"}]}]], "Input",
CellChangeTimes->{{3.700383118104738*^9, 3.700383144361953*^9}}],
Cell[BoxData[
RowBox[{"ConditionalExpression", "[",
RowBox[{
RowBox[{
RowBox[{"11.976796597153522`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.050000000000000044`"}], ",",
"0.44999999999999996`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}], "-",
FractionBox[
RowBox[{"1.2220697972757049`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"1.55`", ",", "0.5`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10", "-", "\[Mu]"}], ")"}], "2"]], ")"}], "0.55`"]], "-",
FractionBox[
RowBox[{"0.47443725266903375`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"2.05`", ",", "1.4999999999999998`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10", "-", "\[Mu]"}], ")"}], "2"]], ")"}], "1.05`"]]}], ",",
RowBox[{
RowBox[{"Re", "[",
SuperscriptBox[
RowBox[{"(",
RowBox[{"10", "-", "\[Mu]"}], ")"}], "2"], "]"}], ">", "0"}]}],
"]"}]], "Output",
CellChangeTimes->{{3.700383138213758*^9, 3.700383147775621*^9}}]
}, Open ]],
Cell[BoxData[
RowBox[{"Assuming", "[",
RowBox[{
RowBox[{
RowBox[{"Re", "[",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"], "]"}], ">", "0"}], ",",
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"],
RowBox[{
SuperscriptBox["\[Sigma]", "0.1"], " ",
RowBox[{"Exp", "[",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"],
RowBox[{"2",
SuperscriptBox["\[Sigma]", "2"]}]]}], "]"}],
RowBox[{"Exp", "[",
RowBox[{"-",
FractionBox["\[Sigma]", "10"]}], "]"}],
RowBox[{"\[DifferentialD]", "\[Sigma]"}]}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.700379548264172*^9, 3.7003795516141853`*^9}, {
3.700380124865324*^9, 3.700380136412623*^9}, {3.700381064928248*^9,
3.700381078958043*^9}, {3.700381362375139*^9, 3.700381385549101*^9},
3.700383026785273*^9, {3.700383184077792*^9, 3.7003831996763067`*^9}}],
Cell[CellGroupData[{
Cell["Define function for posterior distribution of one data", "Subchapter",
CellChangeTimes->{{3.700585065956757*^9, 3.7005850877076473`*^9}, {
3.7005851479926043`*^9, 3.700585178229476*^9}}],
Cell[BoxData[
RowBox[{"Clear", "[", "plot", "]"}]], "Input",
CellChangeTimes->{{3.7003835604829473`*^9, 3.700383563090909*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"plot", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{"11.976796597153522`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.050000000000000044`"}], ",", "0.44999999999999996`"}],
"}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}], "-",
FractionBox[
RowBox[{"1.2220697972757049`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"1.55`", ",", "0.5`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]], ")"}], "0.55`"]], "-",
FractionBox[
RowBox[{"0.47443725266903375`", " ",
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"2.05`", ",", "1.4999999999999998`"}], "}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"]], ")"}],
"1.05`"]]}]}]], "Input",
CellChangeTimes->{{3.700383385068962*^9, 3.7003833881034317`*^9}, {
3.700383507993417*^9, 3.700383541807138*^9}, {3.700383584979204*^9,
3.700383585114896*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"HypergeometricPFQ", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.050000000000000044`"}], ",", "0.44999999999999996`"}],
"}"}], ",",
RowBox[{
RowBox[{"-",
FractionBox["1", "800"]}], " ",
SuperscriptBox[
RowBox[{"(", "0.1", ")"}], "2"]}]}], "]"}]], "Input",
CellChangeTimes->{{3.7003832491061974`*^9, 3.700383252046281*^9}}],
Cell[BoxData["1.0005555530348882`"], "Output",
CellChangeTimes->{3.7003832525389442`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Integral]",
RowBox[{
SuperscriptBox["\[Sigma]", "0.1"], " ",
RowBox[{"Exp", "[",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"],
RowBox[{"2",
SuperscriptBox["\[Sigma]", "2"]}]]}], "]"}],
RowBox[{"Exp", "[",
FractionBox["\[Sigma]", "10"], "]"}],
RowBox[{"\[DifferentialD]", "\[Sigma]"}]}]}]], "Input",
CellChangeTimes->{{3.700381486373068*^9, 3.700381488117299*^9}}],
Cell[BoxData[
RowBox[{"\[Integral]",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Mu]"}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["\[Sigma]", "2"]}]]}], "+",
FractionBox["\[Sigma]", "10"]}]], " ",
SuperscriptBox["\[Sigma]", "0.1`"]}],
RowBox[{"\[DifferentialD]", "\[Sigma]"}]}]}]], "Output",
CellChangeTimes->{3.7003814887430477`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Integral]",
RowBox[{
SuperscriptBox["\[Sigma]", "0.1"], " ",
RowBox[{"Exp", "[", "\[Sigma]", "]"}],
RowBox[{"\[DifferentialD]", "\[Sigma]"}]}]}]], "Input",
CellChangeTimes->{{3.700381660025337*^9, 3.7003817207682858`*^9}}],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"1.`", " ",
SuperscriptBox["\[Sigma]", "1.1`"], " ",
RowBox[{"Gamma", "[",
RowBox[{"1.1`", ",",
RowBox[{
RowBox[{"-", "1.`"}], " ", "\[Sigma]"}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1.`"}], " ", "\[Sigma]"}], ")"}], "1.1`"]]}]], "Output",
CellChangeTimes->{{3.700381670121561*^9, 3.700381721458583*^9}}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Plot", "Chapter",
CellChangeTimes->{{3.700584793672371*^9, 3.7005847956655293`*^9},
3.700584843103354*^9, {3.7005850368954477`*^9, 3.700585037518073*^9}}],
Cell[CellGroupData[{
Cell["Parameters", "Subchapter",
CellChangeTimes->{{3.700585065956757*^9, 3.7005850877076473`*^9}}],
Cell[BoxData[
RowBox[{"Clear", "[",
RowBox[{"x", ",", "\[Mu]"}], "]"}]], "Input",
CellChangeTimes->{{3.700383081182289*^9, 3.700383088472218*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"s", "=", "10"}], ";",
RowBox[{"c", "=", "0.1"}], ";",
RowBox[{"x", "=", "12.1"}], ";",
RowBox[{"\[Mu]", "=", "10"}], ";"}]], "Input",
CellChangeTimes->{{3.7003827074533453`*^9, 3.7003827485860443`*^9}, {
3.7003828426425247`*^9, 3.700382843069295*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.70038307791963*^9, 3.700383079874751*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Posterior P(\[Mu]|x) for one datum from Xn = -10", "Subchapter",
CellChangeTimes->{{3.700585065956757*^9, 3.7005850877076473`*^9}, {
3.7005854535157957`*^9, 3.700585491882037*^9}, {3.700585554809073*^9,
3.700585578215523*^9}, {3.700585628148316*^9, 3.700585629428464*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"plot", "[", "10", "]"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{"-", "10"}], ",", "15"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.700383705291007*^9, 3.7003837156863527`*^9}, {
3.700416652083918*^9, 3.700416655133498*^9}, {3.7005855921405573`*^9,
3.7005855924870768`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwllX001Ikax8dkEkLeRvLym5nfb+Zn5Cetkq4031aLpPfVC201WSJ5iV7c
MGZdbZ1WrVO3iVWorOqkhIpS+VGLq3Zi10ubESrWqJWYSrG5c8/94znPH9/P
83aec55HuD1+bQSXw+Ek6e1/frO8d2hykmQ566h5wrk8WD3cMmI1QbLK5IJO
tScPjfM078Rjel0VOJDqxYPntI6J5cMkC5Ndc5/68GBS+sgkp0fPP3+VmevP
w62JSolHrZ4PScXszTzwc45t2Zah182tD+cd4qFF7aNmDUmWTcvYUNHNww/N
MuVWnZDl3LUuiC2ainzj6Sam7wUsYuV2yeFGKNN8p9jxkWA5OlI4Lp6Ga+rF
x/ZonFiOke39RANjyOdkrch74cAql51+8VO7MU5XuZWnsfYsZ96VTXSDCSS5
+bGhF+xYpWdyy/67ppAPFD5ZXW7LsunfB9wvmQ7JtvcD3BPWrNLli/tzqs1w
xl9zUX3KkmVTJ0YT68xRP41Ol66wYNnYEHruYwtEtvl8cOObsj2uoedK0mcg
On23Opw2Yj3Gr6c0WVtCeWDFsOVLLovAu3bKakvEBOakR0f/XZNQtbH/4Q4r
5K/v0NjmvatJKJ4Mu2FhjWGz+nx5wGBNQnwl3NTWCG+s5TSNtNYcHn3xwPew
Dd4blvyq/alJ5q2+JNsTZgtPtxIPo/1/yqZl2J4SzedDPXzd2+/EqKy5LBhc
EzuESRv8bGwmZDlXw47NmbBD9u/LA2VcLqpm2Vlc0c5EW7hlbXo/D5vp4zXd
XfaYet7jTSBhgpdpoZe362ah1XDOvWcW5ph4pqgY4jmi4YjfWYWrJaJ+WT36
zWIntPnkZ1n7WYNLTP+8N8MZcxVRjccW2KL94nXzpFoCU3K6t6xcbwf17va4
zFMCkH71X+lW2+NpUP0Np2AhdKrOtoIlDmBDHLVLjETwqTvD/rjZCXyHvL3H
n4nQong8HrGOwBFf7+UDFSTijDsCcVsA82Y29MklCg6On6vZKiGWW375QpIv
huBfd6YsLReBP6/P7UCeBDHt2bmKmyKEprS+7CmQ4KY0Ys6t2yLsZGqjA4sk
CG42C3O/LwJjkt1sf0WCZKet5TNbRVi9e3H9L/ckaK40kP/1ToTYuSPZsucS
KF/731MtJGErHnI9LaXxUObwdYsviaM6mc7GnQb/xBut6ZckDmr4A0e/oFGy
MMf2uyAS5FcfJEofGk++1+6KCSMRYl9Z/+0KGh7CLAekkRhwKVsu2k2jN6Ql
WcuS+PZ3q9cPKmmsPOzf2fmABNc99efH1TTu3K72VTeSkLw/cqy9hkYOUcyt
aCbhPf8V09Gg57UHslJ7SDyKSvz38Q497zA8FPeShOPX6+/GdtKQroxYIx8g
cYiIClncTcOwYhXff5hEx4GthTf7aST2PUj21pF4FaIy3TBIo8fuH52uYyQ6
r0qh+UufP6jU12mCxLm8KRsXvKVRnUoVWnAoRL5WjfB1NFxKc7lcQwoDre+u
Oel1Va95hM6IguE3SX2sPj7R/6P0DwsKdXHF2bn6ei4z1BXnCAopJUf7kvT9
njy/v2G+jELZoqOaIv383PbXUhc/CuKbyadUFTQSpm3PmhVAIePMBq+DpTSC
Y4PXTK6kgH0nFode0PMLhJ2NWygstWVatCoa8U1NQ2EKCgr3RPH9vTSWvXXi
Z9yl8M838pSpnjQi0wIN/lNLIZM6mazU7y/DOOm1RT0FImVD4Sf9fu8IG+vO
qCksHA5VvRHQcF+bGH+rmwKv28uqy5yGVUV947CBGEVO2qpHgxI83ROfstVf
jFoNwaPOS7BrjO1Z9FgMl2XDijC+BH+uG0//1CnBRoMFxQVmYhgnxwZcbtfP
tfNHvqOYQr+R1yJFvwtSxy82G3mT2LnNa9PSl1Jk/dDk07ZDhAAzdZBZlysu
sElSxwtCdIvvRI8NzsbM+MtZjb0COBs9v9be7wbnAPXPGk8BDhk+DfF55Yby
E8EBWg8Bhg1++1Twxg02bavy3zMC1E3ULo0ec4ND4WiMtYsAkSNnn4wbM2AI
h/QQRwGudsk5QoaB+6+nVo8bCuB7vXdVTBKDXR1BU3OuECgu+0P3eD8D7qKo
B10XCJiXtuTOS2XQbNX5jDpHoOdS7Yu/MxnYOI9JKlUEMgvO7s9WMRgZzfvw
Kp3AoyPyghu3GLSuOL5AtZbA/MObls66x2Dq7OcH3wYTyD+4RquoY1AceUC6
MoBAgnKJZ+BDBqLMhjjTRQRs9gkbnmoYePdX9p0UE0hLst8l62WgGnT7bZwg
0J9gaVnUx+Diln0zwmcRqIoxCIsdYhDk26ycb0FAGP1xsmWEwT0dr7zQWH9n
It8WeX1gEHcj1NPMkMBouHZZ3jiDfflyw5TPzvj/f2TAmbxCDY4547/k9x5I
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 2.5},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-10, 15}, {2.6489891122422478`, 11.976737576411505`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.700383716481799*^9, 3.700416656158331*^9,
3.7005855325651703`*^9, 3.700585593180616*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Posterior P(\[Mu]|x) for one datum from Xn = -27", "Subchapter",
CellChangeTimes->{{3.700585065956757*^9, 3.7005850877076473`*^9}, {
3.7005854535157957`*^9, 3.700585491882037*^9}, {3.700585554809073*^9,
3.700585624780301*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"plot", "[",
RowBox[{"-", "27"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{"-", "30"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.700416653705834*^9, 3.7004166760521927`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV0Hs01YkWB/BDXhXSSwkXB78fSgfJ8Ps589suk6LJq0mEvEoPi0qk94mj
ThOOMDN6eKSmQYW4pvEouxcpITVXh54Yj1LEOTie93f/2Guvz1p77bW/2yg0
2nuHIofDOczW/3uKhZJ0dpaP4JfQ2OTFBSI1Ng6m+fj8bXWo+RYu3PvWMy6Y
4OOaonNBSf5cGPqrYVpBxsfm34PPOoVxYbOrWFXpEx8LahbcfXqQC3rhK3TV
XvGxRVpPGGVxoSjb6t9aBXx0O50c0vmeC3VagWmGnnxUW98zKYkxhtB4uXrc
eUcsSwnoiXxqAjUq+YZR72m8MM+bo0ASMLdpjrz8DY0OVfbx4lUEbPllxwu5
hMaXifdFBjYEfDM2T0h6ReOpqrq9LnwCCKfSrssNNPqs1JnK8yEg7ei968/K
aYw6sGEkX0BA+FD7KnMRjfsD7LuKOwi4fcdROTqJxvnq/PrdHwmYOZHz9j8J
NJ5zGyw27SXggkZoKhyn0bN6aWjeMAFNFv2DvgdoXLOyxjhvLgn2O8bKTgfQ
uGI0Vu3udySoty926LaicbqwcWN9BgnbS0a7v1rS6MGNm5JdIKFMKEmTW9A4
dmv1M8M8Enx5uX2apjSS3U1Bu26SkC+0yHLQoZH5UEAUPCJB5qfh4qJN4+wc
u7y8pySs5w0NblpMY8SlLuPkFhK+SipcwzVodLHj77N6Q4JTSdZI1DwaYzaf
XfPhIwmZwqO5h1VpNCM6B6J6SejxC3IXKtGY6L4t5fkACQ48p7FUBRqjO8c0
276RkKxkcvXCDIW6HSH9y4ZJeCdR8bg2SaGme0vo0i8kWJf0TxSPU6hzVKBa
xe4TChuvV8ooPMP477bsJKHNr8T70TCFo+verzzJ3mPBS59pGqTwS+/Gj3f+
S0KLxHdLdz+FCm89qWE2j3EJpTjYQ+HlJyNhE2zeOKF+sbyLwgevGtPH7pGg
y+tSXvCOQtWCdJ+2MhJ2CqMqHFopbCk1qXG7SEKln1eISzOFTPj67/Uy2f/z
bDU8Gil8Munv/ymFhNsSeXh4HYWR54b1T5wiYWp10hJxFYWP6/ySU3aRkC65
FNOdT+HfAWe5CXYk1K5usBbHUBh7THemrJWAm7Zquxr3UTgzpfG4r5GAi5Rr
ztwoCu8UZ1cY1BMQt+7xPOEu9j8rimzOVxOwOuh+V3wghc2fm4ITrxFwOaXy
l1BXCr3Sx38vjCMgfqBQvlaXQj2tH46u0CPAqujn+28eOKBPmk6PQqQpKP8h
tt4+xwE/3SgXLVcxgea+wOvbXe3xsrbdaPEjLvh62ZcpZn2HKoH8g+OlRuBM
b8lpl9hhp8L8/QezDeGLu8DoJzM7zJJ0rB3cbgDJV2IKfzyyFl9PO1ckleiD
OL5o4dG7tmhW+/ruwKQueMZ90XLXsMWpusholYQVcFAWM+SxaQ2K3l/elK2k
A6mVD1+1pttgQbhboVnBMth5zcBzvMsaX39O/HVbvDZc0aq94U1Y47jZlc0c
l6Vw8eqeHI9YKxw6/Wr+frsl8DW6vFNxLw+tZlwn8k0WQzrXJD102BKHZNaN
HWaLoJx7K1o1YxXCR81mlY0L4ZLpXQ1t7ZUYLF+VUrdHC2Zj/5HsLjPHD6Ih
6tqGBbDJM6+k8iczFIg0/dU6NCDcsvOHmA4COdtEDzFMHUZ9HecdOGKKgp/L
n1rqzAePJH1x+6QxolHp5N91cyHD8bw+I+Qi57feymMpauDjpN/eZ2qEAide
a3+8KpSfDy4e9zFArKkKmw5QgUr6jlJRqh4KPE0L5oYqQ6bcJsqnTQeBl/l5
d7wSTNfUbG3p1kbBTHXV4Jk5EKR7KLfNZAkKBvz7F5Qrwo8nmYgy84XIsQ+M
1XqtAHun9mnzHqijwNkxY3ypAvQa3RL2b1RFwZfkwLfBHDjhrSxzC1Fg52fF
dhtnGc0Dx+mEirFazglez0PODFNc5Mk9fKi3luN8aMj2xhRTavkhxObqVoaz
uXhTSeQko11uGdMw+Q/DqW7MqfSaYF6aBOZ7d44ynDMtFqcs5YxeglWK+wwH
OIbr0q6bjzMmbn35x6NVgCOVpUbYjTFaqsI/1XzVgfPmWVcpNcqouL4X1Q5o
Acdpb26Bv4zJUJ86qy5n3SyxbdsiYwxbl5/zU14IHMspsYqPjHEI9E4Z0Wdd
d+3XCHcZExnz+DzpwToj8YONo4xpzb1xUXybdXLa91/1ZUzO+KGb2+MWAeeF
de/oRymz8l7mrZsJrMP0O/jvpMxfibeL5amsvy4TJ7VLmRean0sz/mB9UGS3
7KWUUTINqqh/zbrg5AnnR1Jmj5fLPR69GDhHrBtrr0uZMe2Q2mOurEV+Nxdd
lTLCN8exwYf1v1o27MyVMtkRdx6ERbLeOVG9IEvKtBy3qP8tm3WEIH7vWSkT
4Oz6pLuQdazf94+SpEy/WniD9Z+sKVPUT5AyipnZz541se7sHW09ImXEflWN
yztYbxXdWH1IyugZtD3f0cu6Ikr3XIyUKegeaSobYf0uel1ftJRZW6TVMjvL
uiF41bpIKfM/q2qLxw==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-30, 5}, {0., 11.972838681407259`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.700416676809072*^9, 3.7005855974462347`*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Posterior P(\[Mu]|x) for all 7 data", "Subchapter",
CellChangeTimes->{{3.700585065956757*^9, 3.7005850877076473`*^9}, {
3.7005854535157957`*^9, 3.700585491882037*^9}, {3.700585554809073*^9,
3.700585578215523*^9}, {3.700585617975617*^9, 3.700585619965116*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"plot", "[",
RowBox[{"-", "27"}], "]"}],
RowBox[{"plot", "[", "3.6", "]"}],
RowBox[{"plot", "[", "8.2", "]"}],
RowBox[{"plot", "[", "9.8", "]"}],
RowBox[{"plot", "[", "9.6", "]"}],
RowBox[{"plot", "[", "9.95", "]"}],
RowBox[{"plot", "[", "10.05", "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",",
RowBox[{"-", "10"}], ",", "20"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.700407114630683*^9, 3.700407138409728*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVV3c81e8XN7N97T0u1553uCrhnkeUJKtIVghJGkrJqCiloRKRsleEZCVU
7kdWWckOFZGVvbef3z/Peb1fr/O8n3Oe1znndd4yrhes3Bno6Ohg5/i/3dfr
+297G48J0a12RZOSIG8+ffrQOh7LMlLMSzJJAlnOjvmoJTzWjktd+eiaBOx6
lA3FSTxmuRSpRopKgp7ERU6LHjxWoKv5h3UxCa65XtVILsZjjcttMvuckqF4
zM8HzuAxQ1XdTTf1FNBYCVgObpXFPl46QX49kQotPt8fuDfJYpY+g8TkjVS4
9E9RyuSLLPbcd79NBmcalPxqN+SvkMXwhqpGPWppoFejEZnxWhYbjJvTmDmX
BqaRf9Tqg2Ux+xNDy11zaeClZuLKrymLDUtkGq+wZECms2hTxkMZ7HPurv0F
rplgFRfINHBXBuPrsxUzv5IJWx0/90ncksFq1Dtvb4Rlgs3h1OzIazKYewaL
4d03mcCkrXrvprsMVvZ9a81mNROcOfT2n6DKYM8jFgJWo7JAtMS5jHMeh4nb
P9HM7HgNDzmyMi7b4bC9a1yti49yIVXX91utNQ6Lu57ecC09F0rPwaqoJQ5z
3TNylvtDLgx/6zbFDuKwW1KuAz6juQDP2BY4KTgsL5TRS9zwDSxJnDV49R8O
8zXe9GHZfgNVDg4VBfelsYwHR+6U334LF1M9iUFOUljydQ0/PY8CWKs9knb8
mBR25GxGm9GVArj9jyRINpHC6n2tuuxDCyBGa3NljCKFnS25zFqQWgAfa59i
x7mksEOJhSH0/QXA9q/cnPxREvNdyA044FgIqWSu8+OikphJ+Y8MzLUIOqoL
sm07xLHLDZ9HMuLfwaWzeW4DDeKY3ORtB8O8d8DNlyPl9VkcKwrHT8zS3oHx
yfTIwLfiWEeHf2TA4Dv4uBoTkHhfHNPceB+4X7UE0jWCTIb0xLHdW1KTtE8l
cCn2wPiFV2JYp6OqT93Ue+Dx7lUO8xPFCvT13J1Dy4GtQ47B6JwodoOz+RF3
fDkw6J/vYTgliqmUYoutReWw8B/9wxtmopjTfENv4mA5/ChSmLgiL4rNKgef
MzL8AKnrPnlubSKYsHyv/QDbR9B6yEo20BTBLA5gk0uvPoH6giUHnbwIRriI
c35R+QkUHOMGP4mJYFEfnbeP9X0CEU2NZ3t3iWDf1sqVRPgqYLP16CLhpzDm
paI43nKjAmrFkt5LPxTGTskMv5B1pMHxbIru5rAQ1pgfNbkdg4EC3dHV8T4h
LPmjlNT7DAyWrC+WdLcKYfknpjmCijF4Rp9DKK4QwiZcz1lrtmLQaouTPxsj
hF16ayCpx10JZiwc3D+MhDCWe3Iv6e9XgqFb/+/idEEs1uaRYOT9z0CQenjb
21UAuxmSsilTXg38S7R7LCcEsDvf818HNlTDUtPCo1RzAexBgG/KUF81fLju
FNutK4B9vz+fO7RdDQd+Et8YCgtgrrHd1YkHasAhvrtTopEfS0v/kcfSVQNh
YgoqTRR+rK1RUVSQqQ685uw0PdX4MfFexXZf4TowrX+ixYjnxzwlDn/6q1IH
fAGr+nt5+LH6H3p265Z1EP+j8WjGOB8mZigdupxcB4Wxl69fT+LDGPATS8jg
C/wSqmxRZ+PDhNp0iqIjv4JkgcHC5hYvNvfgyNh/2V/B4XC1cPMCL/bpCW9n
cuVX6LlZ53S+nxdLoPMisMx+hY7Rpom897yYL8fm1VGLemgs72ElePBi+XsW
+PkEG+CD0wKQqngw9lVm5TdvG2Ft5YobQxkPhn1mZlGvb4Q9UcthrXk8GGyb
FtUONUJJ3VrzpZc8mKNKY/9BsSYoJNA7FvnwYAms0UGhd5vgNQO3vxaOB9M6
HXFz61QzaB4xdz23xo11Tlrz/BRtgfY7IXs9R7ixUc2FlA7FFrhWUcRzqp0b
GyNYbvRQWgDTFKHZ5nFjmp/ydTmtWsCKb0Dc0JUbYz6Vbcz+sAWudl3qEKvn
wnya38Tf3G6BCpcY4y8vOLHfKmrO2XPfwfTqTw38XnZM8Fu6AgtzOyTce//t
ugI7RvxjN20g1A5TL59e7OZnx64dlHR+rNgOETSjwkdTbJjl5tiVYybt0M6a
R1lJY8NilqbFkiLawSHuhm4TNxt2I2Cetg/XAecwaRO/IRZsw9zrFL1pJ1S0
ro5//86CxU+G+Fmc7ASev20P1WgsmN0xLnLBpU4oZLvXNPCCBZuurB3KfNEJ
S1YzFqbmLJjQ5wcC3qOdcOMvdlymfBdWT6qYdLrfBY/ZXd0bnjBjUul0d71/
dENsSodBRCAzdkUrbGN8phtS9hzCWZ9mxlxWjo0Fs/6AYg9C7y99ZkxpcO7e
/O4f8OPzlsXcJBP2We1u/NLzHyAXGKcrasqEsXVyH3vg0APl/9r5T7MyYhfo
zs4mrfRC9S3jWdUFBowj5ONxKn8fNIl+bJ75zYD9+Y/rzqp6H/QfTLsf8J4B
O+X36VXFqT5gTvfZfuTBgHFljKg+aekDCwfuf8XV9FjZI9UO17c/YaTx4GeG
EDqM7Sjd4axbv0HYc1xT9jwdZnmmm6c98TccZHyUgOzpsNaDAX5iH35D5t7W
a8EUOkzfofrp8vxv+GZa5rTRtk3z+ZK6GEDuh5btP3vmM7ZoCzduPuR63Q+t
7tqT/Yc2aJ9bew2HEweAFB/4RVpug0b+yCpZmTcAka1YmtPWOo3TzJMzp2IA
rKiH7foK12kcea/O5f4agDYR57ou8XWafA3zqIf0H2hvuJ/SPLlKY+xvdfmS
9gc6iT+tPz5dpjVz9vDnlQ5Cpo919jfPZZrL0tZ+jsZBuFbQtPWHukxTX02K
Cvo9CGLEiky2qSVayAe+8bhdQ+BISFq1MVmimWZEDX+zHoIhDZeEWYZFmq32
TQ6ZlSGYU/07pOA7Rzvhz8zCdWQYqs467tU5PEcTt7CUFD81DM9yOh4dkZ2j
reAHTMF/GLRVa7V9W2ZpUg13nVoyhsFfJfNepdoszVwtU4adbgTorFptS+un
aevsgTrrpSMgYdozIvtmnGa5S6g7Um8MLpK83n9xGKcpLpVpG9iMQbXI2t3z
nOM01hhLFY4LY+D9V1Sh/OwYrduSEY0nj8HHGyfcLFVGaeec9I37mcfBoaC7
/2bmX5ph73P2mvZxiBfq+tGX0k/7KRLbYxA2ATMbHq9vWfbTZnJ+TjimTYDh
4NI1Jfp+WrIfyT6GNgHdJ9UJo9gvmtzm5eaTKxNwLTI3V0i/j9ahlp9le3YS
ypazMy7v6aKJyd7w27aZAt9Qc017u3pa9F0+Pnb8DGg637wYp/GVxvBu4PEq
cQbG970t6GX4QjNcdSpZhhk4Oc+t5ZBTQxPLyzHAnZwBE9fmPY4bGO37KtDL
xc9AEB2F7bp/Hk2irKadUXQWvFm9rPfuK6FWFIlcjJGagyUL9rbSyFJqdFu6
XoDmHIS8yLbYM15O7Uzm+Xwe5iBG5d/h3S9oVO/iOcoD1zlwVtBOeRlYTU22
kfsQnjkHD43fP4/90UR1e0JmadGah4u1Dgb1Jt1U9hpJg1aHBWgpXNG1neym
plTGBj3xWQBC0rPdw09+UGnRiYqn7i7AtF+jGkNHD1UsuUzbLH8BzivrCuuc
/ElVoioJaDMvgnYt11L73gGqpHsBl1vRIpCVJ+sNzYapVX/Gfq3KLIOr9L4v
D5OGqa/NU/LL9i5DpOD9mtaZYaoK5/dzUZbLMEcvjzlHjVDn15Xw0SHLUNjj
8C6oe5S6yvO9qf3PMhDCG5OKXf9Rb2kpg3P2CjxfttaJ3DdDNSvG7t0zWwPX
8cTYYJcZ6iGW+ILZ02ug9nNk6XzYDDXLwXnJN2QNPn/2LzrcNkMtsl42qi9e
g4lHCWrMZ2epgh5jckUS6wByf6WuvZyjrge3hT+fXYdxC19Gp9UFqtoyW8DN
/E0o3v/JxVR6kcpWuLXLo2kTbmrvwnSMFqlHWx6Feo1vgoBEbJDw00VqhdCL
jia5LdAf+bDYorREndBN8qWP24Ko64yj+22Xqc/tLCx0Hm2DbnZko/L7Veqo
4jzjQjUdionKKtjfv0plKmJ6/KWTDs0EVcQ4sq1RhYhTBwpG6VC6+bjzU/s1
an/a1Vc0TnrEsYgWV7bXqHTiJg2t1vSohzor+cV4g1qQvX1v9B898uswv+DR
s0V9VlqwP0yJEbVUuB8LZtym1t2w5OTXY0QqWYF7X6ptU3/1fjtUstNTvwIy
GZtvbFMLj/c92x/IiPAR2w0veemg8tR2eNA3RvSActyZoYQOaBftw0KCmNCJ
4F33v2/Rw7M6d96cMWZkFzdWsMXHAJr6Vyxm6HYhu5LGHlVFBhjX+tNlLrKD
JyLV7pozwLViV12ng7uQg610i07yjn/mrYYPr3YhJ8Ie4XTECKoWIzPRXizI
rf9MxtVQJiDpOI7lsrAht3XT5rRYJsinVYsEyLIhdyHCcksuE+QxYSXuemzI
w3TJWLWDCTyejDXEXmZDp0tvTfyWZ4b0/mHqpQE25BURRz5Uxwx0wXvaeKvY
0UVoqhRnZwEVsYhqpiROZHI8xG5KggXYPgoUtn7gRHLnKfOYJgtcr44UpXVz
oq64BDkPaxZ4pmXcMs/HhfSXz4XlJ7OAq4ipZss9LsSRx33EaDcrGBua8l8I
4EavxC26z7uxwd+ucEvWfTwomMTkg/zYoGybw+ryYR5kd6iUTeABG7AVeZpN
2/MgLj/cvrK3bBA9ZuEmdp0H+bbOJDCus0FDqBmnPsaDDO4/PRX7lB3+Lv50
rDzEiySSjTa80tnhBF9pHtWeFy2VrD7Te88OVUU+R75586LXQy61f/rYYdzj
p5NsBC/iAZKyuhIHNDZdKI/p4kXjNsOV2zocQNB45504xouqzr20az3CATye
ERsl67zoahxDuN9lDiiyuEkRw/Ehi8ISOZO7HKDtsvHEjcSHVL56fZJ4wQHZ
N/qUaIZ8iKlfymY6hwNadiaK8nE+9HOpdaqyggPC/T9JpZ/hQy9oHwK8vXmg
YupMq4qyEIq5W+A8f4UHptnGetO0hdCzI5kHAm7ywF43EV4FQyH0uDeS714k
D1icvUE+cFIIhS6fyU4r5YGq0TeVS9FC6LymSE8PEy/sqTnVg2cWRoZJvnsP
JfDCRad/LdvjwmjqhvqKfDMfnNWJKlPpEkWCJ8xXg7r44GlpUd/KsCjSJfus
tfXzgc8+zXutS6LowUjxRsg8H4Q5W6ZmCYkhBQtd+l8i/DBsvodjwEYMnZQ5
zB5zih9snwQxhv8QQy1VnhK7VvnhUYTcC6FRcVTAmg7DeEFIyhVO8VeTQkE4
fzyrhiAoTYR7SyMpdGCP2S6VPYLAt3xavdNaCvWdXmk4ZyoIPXHeLVdvSiHW
OtPji76CsCSw4nG3TQo53Vk8x1QrCHORL90nb0gjToaDcbKeQkDH7WD62geH
PNfHFp1yhSFqIoqgMy+DcE8zI9reCcPHVrtg4W0Z1KXgrmpME4ZZF0GtLXZZ
dMCq35nYKgz0/oFjI7KySO51ZwPjijAon7sSpH5UFvXbVKVk7ReB+XcjA/fe
ySLbwvgjcz0igHN2dqWF4NGhM+YZd9jEYH3FkayvI4/SdTGZGn4xqPYtTV44
JI/oeIiJTFJiYE/3drT0hDwqKeF7fpskBuKzl6hn/eWRHFPnvRB7MXhdaBt+
rUwebSU6eF9/IwZcw9g00lVAxe1nyFcsxWEVr7+xYKqIpCC00u2FBGSFLehr
JiqjNAWZE75pO9gydMS3QBkpcVXM3H4jAZrpR140VCsjUs+ydFqlBNwzhOO5
/5TRAd+zNwbGJMB90GRBV0cFXciy2uekIwlF6Y+vZPWoIIxH5t3xXkm4yDQr
LKSshlwGPmWZSErDxt8o+2vbGqjVaP9KroI0WFa5+HYKaiLD7C8H/yNIw40C
AfwBNU2kdLltuM1AGhJ+bIPdCU00xTQm5+gpDV238/StizVRkJJAyoUiafia
8mStTpuApsJfzHz/KA3suq9O3DIgIOdZKdCqlQZ+bycNIzMC2l+u/HulWxpE
k4fXBt0JiN2UKnlrSxqaWXct344moMbd70zr5XCwlUazIS4REPO4n2+gMg7K
Q55YuDMQkX68TryaBg5IJ1/NJ3ITUT4d9u/xbhzk3mkkyigSUdTX+gdHTXDw
gGXUwNSWiBoDHxUymeMgyEB++bkbETFpWPS8O4qDeDajlt8XiUivn4/htC0O
/nM6Ny59nYiuRnYoizjiYNbUr8byPhG9NYy1/OqCA2FjHm7PaCIaXbLzD/DA
gXP1PCaSQkQyryVTVM/i4E/ooaX4TCKys+//0ncBB83Dipcb3+zEw5U288gX
B/Ixhpd7inbiobmLUP1xcLnqTlFb2U4+cv9Op9zCgeLvz5cTa3b4Jhd3eUTj
QFqjr7e3b+e9GxxG0+U44JPjvtzFTkLz3zJ/MmM4cJFY8eDhJaEtnOFViRoc
pEok1B8SJiH+qqDMQ99wwGNl2VmBJyF9lim29EEcJD7ee+m9Lgk9e9LSbMsp
A5efJ0zRXyAhSI62/ewoAx/XT62Ed5DQi0pp72g6WdgbVKdlkUtGLy3zna2Z
ZeGFvEZsXSEZxQ+AtSC7LLhyfPqGysgokd5VP5pfFmJC0jP1a8koFaXzRCvI
wtZ9Q/sT/WSUXan07pmpLLDzRHpwCmqhj5XErahYWdBjKtYXCtZCnyw/zx1N
kIVW0n/+7Xe1UMWA1Qh/qiw0sQgXRj3SQhi9b0tUjiy4XBWJFojTQjWoJDWq
Qha89N0w8RIt1FypczBqSBZm7OkbeSa00DfLhn1Hx2RBilp7rW5OC7UM2BP4
p2TBh8WKJ3BVC7XSXxeNWpYFbSa+js5dFNSJaP8i2fFgnnY1wVSGgrq+m/db
/YcHj5v4l52KFNTt0t/OJ4AH7Xy+BWsNCuoJoa+IlMRD3u/J16r7KKiXN7LQ
ShYPHYl9JoGIgvpSZDP5FPGgyf70bMFBCvpFLIprVcWDmGSKa9URCvpduT8i
koCHuUHmkudHKcjX3itSh4IHtQ8pyfo2FMS+GPHsz148mJwrDOSwpqDkx+9j
HujjYVODdzZqx19b6VcsaT8eJPWMNRcsKaixkimu5yAeMi0FxrQtKMjVXjXh
likeErZmKl3MKOjx42sprdZ4WHkbrhRkQkFySklpAXZ4cLBjN7lgTEHllTUZ
sifxcCLbwN3qAAUNL/BlX/LEwy3mOdXxnXz07d8U8gXiQercLU67PRTUvtBW
XH4TDyWF+4e+UCjI6/FaiWsoHkafPR2XIVMQnZJMGft9PORGe8e5ECgopvLg
h8JHeDja98z1ljoFqdmf/2QXiQfZqxkaASoU9HnhGY3hOR6Yn3ikE3b+2/bx
h8rsODwImQk6NeEoaErxT5VVMh6sIzsgQ4iCQitZa9fS8cDpXPhAh5OCxOw1
v6S+xoPL038LWfQUdOBxUONcIR5yMA9V7Z16SFwQ6oiswcPIg+xmL0wLaT3W
69Kpx4Pv15Ap03daqF7R7cefZjy4N12/KJGthZbsCn6SuvFwTuXL9rUoLRS+
0PW7pw8P0ab7fdfDtJDs462BWwN4YBfTdLAI0kKlivJDKsM7eJl21eCiFjKr
PDzcOo6H0KUUk1NOWmjI7tJowDQe2qeN6nsPa6GAhdhx2QU8dDKqSmjs1UKv
FIenLm3i4eWF381R/Fpo81HwMh+PHMTTEwzy6sgoUjFztVxADuyM+nICi8lI
qbJp3VVUDhj6RdeWksmowm5hk11KDgQc53aPhpHRsQUxuiJZOfAxE3axOk9G
uXbvWI9S5GDpo/vUCAsZOSiOi0bZycHc/hCPl/okVH1yPDz5pBxE+gSJ1e/M
C7XY8e03bnLgrh7qLcZGQhus//5+OS8Hexl0GqTaiShu/F/B1i050P08W0U7
S0Q9byYPeeXIwdTmtfh7KQRkqzXrjzbk4IXu391BZhoI856dMKOXh8jlUtlr
MhpIKWP2pMMueXjzlbBWsqCOVgTnjPx45IF96KjFRpw6er48x/tGTh6qWI7d
SJhUQ53lC69FjsgDp9131qV4VXQUrfyYTpAHm4Muz2qVlVFh6UTWq1R5uHN0
/RgTizLiIQz4OWbKw0CmTezlISXUKFUv2JAvD3cfusT9TVJChhtxlq+q5GHR
Q+cgj6gS0n5P/eowJg9t7256HhBQRGLqYaVftRTAdg+r1yU1eXQtPTAseK8C
pGIUE9f/5FGn+EWb3foKYHg0Pz9wTg5FsZ9YSD+oAKdelMiolMkhzlEVQrCd
AtSe/CZ+wVgObaY2Z2oHK8Bbd3Kcx3k86hcRep7WoACtTIKcoZ0yiEdzqJPW
ogBf5WFZ7aMMAqNCob4OBZgW6Ly7lSKDkn3MYgT6FeCjnNlTsfMyyKX+bvSd
BQVIoJex12SVQX8Cl6NOSyrClP6abvR+HBr61R2hekERqusoLa45kkhg8VXL
QV9F2BDnnZ29KYkMOa7wuPkrwryQSlrVMUmUvps3Iv62Iuz6TeVX35ZA7hGH
nnDFKoJeulYB53EJNIzKH01jimBc5XItg08cjaTHPSjiU4I4s9GWyBIRxL3m
qOAvrAT7TV+e5o0WQVrmuM/6EkrQ3nnmEe2yCApeTV/9Kq8EfU1x3q+JIkjM
LM+zf48SHNMx78t5K4zMlrEDXCeVdvabhVnNYiH07tAww+kcJajyYzU591MA
9SVmJarlK4GCHvuwQ6UAYljw0pkrVgIr3zQm3wwBZJY47XO9QgmMWZkGhM8L
oNG5lf6o70rgp1zapEkvgCTiOWjYshLsHhMwu6DBj25PEQLFDJWBEkloLU7j
RfpH7st9MVaGssMxWsnhvGgtZ6DpypEd7V0prplzhRddPBOJ+26jDIs3H++W
NuZFTkPzNWFnlCFGkqcwYIoH7ekp4Vl8rAxzKoG7fgAPmqjRffXthzIcNnvC
LbHEhTLlos2v/1IG+dfCOPI3LuR6e3JFZVAZ0vWmmW9mcaEfkHj47oQyONV6
yhbbc6HaD9szutvKUOvdH/KwmhOlFHzely2nAq5xKfZvkziQTYLx99ALKmDl
gnH99WdDgy8D/j33VQF7cVX+gzZs6GJsLnOOvwokajRK/iSxoYdRPDrfb6vA
L5tJpvQJVoTd706VjFWBnIvMd5+5siLlq56+JZgK1GxdNvp0nAVtmN0THuVV
BQVLKFN3Z0b3TcuJ60KqUCiTcenmQWYkZDJxmFtCFXoPtylsKDMjopFFsJaC
Klw5djrwyjQT8tgnMhasowqt2xPNzjv6uUUxq1z0lCqYN1ZTBhMYURrdF8fD
xao7+87u8PlNeqSgN9XGUqYK2Rf3lLcN06NsfwGT6k+qkGf8aqT1Gz0qnHPW
1qvbuX9WO0o9lR5hQ6vcmj2q0LWbIcjcmB71fVHF+OjUAN9m14V7SYcEnj6R
7TmsBtnheG0sYwtim97FxliogeXoU5OUG1sgzt7HfdRaDbwsW8+UHN8C2dtK
6w1OarCHuzEzkH0LCFcq2z75qIHN3SRLr0ubcOTEfGjKczV42/RdPe7wBtyV
OT7iObjDd66h/4rMGvRt2DQ/GFUDc1ldsYjNVSB227zLnVQDx/8c8n7+WIW+
xza3Z5bVIJPzQDFv1CqQNqylr3Gqg7+95Ew7yyr87Dx2PIyiDslSAz5ha8ug
FW5VlxGmDo5HuBfeMCzBg9NWeXXh6mB05eyjzKFF+G1gFT32VB1UFXuqG2oX
4cGq5Sn1eHUYGu3hjXq4CP0eltvF+eqwHkC0FhJehHBksbv6hzosn2qmllMW
YHDpSOYfVQ0IqVV27n8yB829g3ETBA3YfRt7oOk3B6WYf8QSRQPeuij0JjvN
QfiDDH920ADL9g9KY+pzoC21eZh0TAOGAosVOJpn4Z5R7kxIkAbsuWsqclZg
FtSfsevINGmA6AuVrtKL0yDin6yh2qoBvW0BsWoHp4HBSRtP6dKAm3tE3X9I
TkOnoivnoQENIOWe7ulrmILgD2W/Li5qAK9Wj8ctlSlo/eN5G5PUhOR1qijj
3AT4EesaT57XBNF0GK/PHAdba0tJ/sua8NRgXAkfNg57/HvP1fppgkB980y6
xzisYdPc6iGa8JM1CeQUxiHIQsRyLUoT3uXANEfmGNy6cKbjWZkmmJ0Un7fI
H4XaTuZpNwYCsPnFxx3+PQwloybPK5gIkE04uXGhahherT2hirAQoPHwv6fv
M4chTEosooGDAKGE26lvLw6DsYcGkSRIAKrVlRP6TMPQsGhzeVuRAP4uzSN5
xL/QIpC1/OIIAZyaFUXepg+C8tIJWwULAhRPNmwMPRiEW10cZYVWBLj8LnVT
z2cQKC8vBDQcJ0A/xe+Rrf4gvJTevbnhQgDV/qf3VHr+gJtKLYPzVQJYHXsx
KSzyB1apQ1wKSQTIYs6K7czpByuZmPOFKQSIFGjjEYzph1wG42/66QQ4PoRb
vBjcD041ORHHXxMgQoPXMdi6H6pNLvPfLyLAnebf5FW6fnhszSA6UUeACc9F
IefyXyB7FidXOEMAZo6aZdOjfbB0tpHEP08A7v/E328Q+qDB+xryXSRAUFz0
7S7uPvA93+KkvUaAORKDG1dDL9T6BL8oZyRChPYdsq9RL5y51s9dJUSEsVWR
sC3UA/l3klfbdInQmdFzJ9a2G0LvmrJSqERIeXa+xWBfN5wIWxGKQUSInL5a
wCvVDQz3LbRsDxCBOaDBX2KoC46F013oMydC6Jcc5gGfLliJdB4aciWC3ML7
kc2oTqAm474t3iNCvueMkNVsO/zKeD5k8pAIzt6HZUu62yEoh3st6RERqs9/
ENmDtUN5yYacSSQRFvy1CdFP2kG7qTsgMY4IZul9i28120F9LULhYB4R6N9f
6zt4pQ3Ej9HfiG0jgotOQj67YCuUn7gWNdlBBNPX2lnD29/B9uR0lkE3EW7V
0Wv2jX+HGK+fbRN9RKDO7Pfir/wOfCFlymiYCOUvlWTenv8ObHk+HWMrRJh+
n3QquLkFlln+qO2TIgHPIaEOH+o32OqrWfuMIwFT0jY7o8g32FX4+osJngRl
p7++rZtpBiEHHzc7JRKcWg0ijKc27+gYunh/EgmGiCyPwtmawddWmqP0AAkm
N0t/c/Q3wlyWw5jWBRI8uO2iSMyvh7Xr8P6jDwkYJosK8x/XA8NRuTuGviQw
s1fPtz9XD7yb/3DH/EmQWpshQlatB4JloO3l2yT48P2L1UDWV7iw+qKu4DkJ
IhYaWNlzv8DEoa4MDYwE8mluQrwttXBB/53Mw88kCBTfPhXwrnanTqISRqpJ
sGvwXgFjXC2siJtHJ38lwbdpgzdXPGqBaao2lK+NBGvPvbtbt2pAIrLk1NJf
ErzFXVG1oNSAaU+0TAUHGdgXYjStSqvgW/PlBDFuMvS5e7JfSqkCqypLUT8e
Mvi1jRi/eVAFtrlcvARBMiwqBp654lgFbjfu0KVKkaFsr9ZjY6YqCJK98vsO
kQyDsQ/iftp8hlyvYwlHjpMhB5f9d4i7EkoZSjxmTpDBOHmgfmwFg+qXwoQo
BzJcCmMa4xjEoLe+53O3CxncTN5oZr7HgF3VZfSUNxniY+wjKK4YeP47Rw4I
IcPyG8ohaX8ayHuHfX2VQwYtA54XnuyfgMA0FnkojwxFFH0b9b8fQTfexGEi
nwyiUS2meOwjHGvkmiaWkOEtSviRcvUjhKo9E/iEkaH1Uq/Gn78f4M9E8sm2
DjJY8Dj0azeVw1Qog/LVbjJ8P8t9fSa7HNYk3OZEesmAx2ZMuu6VA+8RxTtO
/Tv8bv6hqkblAG/eZI+Nk2EzaODLCK0MTI3+8w2fJEN/zcIBpqQysP15UU9z
hgxP1a34TW+UwQUurRbfRTLU+JfnOOiVQUBG9AvhFTKkHl1nkJcsg7t6y67l
a2SI8JmtEN4shcgOWzXHTTK81mV6pfWzFBLPlS9ub5NBTmjiRuCnUvgfvLOo
0A==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-10, 20}, {0., 1.3983346274678214`*^6}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.700407115820561*^9, 3.700407142726254*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"%67", ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"HoldForm", "[", "\[Mu]", "]"}], ",",
RowBox[{"HoldForm", "[", "P", "]"}]}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"GrayLevel", "[", "0", "]"}], "}"}]}]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVV3c81e8XN7N97T0u1553uCrhnkeUJKtIVghJGkrJqCiloRKRsleEZCVU
7kdWWckOFZGVvbef3z/Peb1fr/O8n3Oe1znndd4yrhes3Bno6Ohg5/i/3dfr
+297G48J0a12RZOSIG8+ffrQOh7LMlLMSzJJAlnOjvmoJTzWjktd+eiaBOx6
lA3FSTxmuRSpRopKgp7ERU6LHjxWoKv5h3UxCa65XtVILsZjjcttMvuckqF4
zM8HzuAxQ1XdTTf1FNBYCVgObpXFPl46QX49kQotPt8fuDfJYpY+g8TkjVS4
9E9RyuSLLPbcd79NBmcalPxqN+SvkMXwhqpGPWppoFejEZnxWhYbjJvTmDmX
BqaRf9Tqg2Ux+xNDy11zaeClZuLKrymLDUtkGq+wZECms2hTxkMZ7HPurv0F
rplgFRfINHBXBuPrsxUzv5IJWx0/90ncksFq1Dtvb4Rlgs3h1OzIazKYewaL
4d03mcCkrXrvprsMVvZ9a81mNROcOfT2n6DKYM8jFgJWo7JAtMS5jHMeh4nb
P9HM7HgNDzmyMi7b4bC9a1yti49yIVXX91utNQ6Lu57ecC09F0rPwaqoJQ5z
3TNylvtDLgx/6zbFDuKwW1KuAz6juQDP2BY4KTgsL5TRS9zwDSxJnDV49R8O
8zXe9GHZfgNVDg4VBfelsYwHR+6U334LF1M9iUFOUljydQ0/PY8CWKs9knb8
mBR25GxGm9GVArj9jyRINpHC6n2tuuxDCyBGa3NljCKFnS25zFqQWgAfa59i
x7mksEOJhSH0/QXA9q/cnPxREvNdyA044FgIqWSu8+OikphJ+Y8MzLUIOqoL
sm07xLHLDZ9HMuLfwaWzeW4DDeKY3ORtB8O8d8DNlyPl9VkcKwrHT8zS3oHx
yfTIwLfiWEeHf2TA4Dv4uBoTkHhfHNPceB+4X7UE0jWCTIb0xLHdW1KTtE8l
cCn2wPiFV2JYp6OqT93Ue+Dx7lUO8xPFCvT13J1Dy4GtQ47B6JwodoOz+RF3
fDkw6J/vYTgliqmUYoutReWw8B/9wxtmopjTfENv4mA5/ChSmLgiL4rNKgef
MzL8AKnrPnlubSKYsHyv/QDbR9B6yEo20BTBLA5gk0uvPoH6giUHnbwIRriI
c35R+QkUHOMGP4mJYFEfnbeP9X0CEU2NZ3t3iWDf1sqVRPgqYLP16CLhpzDm
paI43nKjAmrFkt5LPxTGTskMv5B1pMHxbIru5rAQ1pgfNbkdg4EC3dHV8T4h
LPmjlNT7DAyWrC+WdLcKYfknpjmCijF4Rp9DKK4QwiZcz1lrtmLQaouTPxsj
hF16ayCpx10JZiwc3D+MhDCWe3Iv6e9XgqFb/+/idEEs1uaRYOT9z0CQenjb
21UAuxmSsilTXg38S7R7LCcEsDvf818HNlTDUtPCo1RzAexBgG/KUF81fLju
FNutK4B9vz+fO7RdDQd+Et8YCgtgrrHd1YkHasAhvrtTopEfS0v/kcfSVQNh
YgoqTRR+rK1RUVSQqQ685uw0PdX4MfFexXZf4TowrX+ixYjnxzwlDn/6q1IH
fAGr+nt5+LH6H3p265Z1EP+j8WjGOB8mZigdupxcB4Wxl69fT+LDGPATS8jg
C/wSqmxRZ+PDhNp0iqIjv4JkgcHC5hYvNvfgyNh/2V/B4XC1cPMCL/bpCW9n
cuVX6LlZ53S+nxdLoPMisMx+hY7Rpom897yYL8fm1VGLemgs72ElePBi+XsW
+PkEG+CD0wKQqngw9lVm5TdvG2Ft5YobQxkPhn1mZlGvb4Q9UcthrXk8GGyb
FtUONUJJ3VrzpZc8mKNKY/9BsSYoJNA7FvnwYAms0UGhd5vgNQO3vxaOB9M6
HXFz61QzaB4xdz23xo11Tlrz/BRtgfY7IXs9R7ixUc2FlA7FFrhWUcRzqp0b
GyNYbvRQWgDTFKHZ5nFjmp/ydTmtWsCKb0Dc0JUbYz6Vbcz+sAWudl3qEKvn
wnya38Tf3G6BCpcY4y8vOLHfKmrO2XPfwfTqTw38XnZM8Fu6AgtzOyTce//t
ugI7RvxjN20g1A5TL59e7OZnx64dlHR+rNgOETSjwkdTbJjl5tiVYybt0M6a
R1lJY8NilqbFkiLawSHuhm4TNxt2I2Cetg/XAecwaRO/IRZsw9zrFL1pJ1S0
ro5//86CxU+G+Fmc7ASev20P1WgsmN0xLnLBpU4oZLvXNPCCBZuurB3KfNEJ
S1YzFqbmLJjQ5wcC3qOdcOMvdlymfBdWT6qYdLrfBY/ZXd0bnjBjUul0d71/
dENsSodBRCAzdkUrbGN8phtS9hzCWZ9mxlxWjo0Fs/6AYg9C7y99ZkxpcO7e
/O4f8OPzlsXcJBP2We1u/NLzHyAXGKcrasqEsXVyH3vg0APl/9r5T7MyYhfo
zs4mrfRC9S3jWdUFBowj5ONxKn8fNIl+bJ75zYD9+Y/rzqp6H/QfTLsf8J4B
O+X36VXFqT5gTvfZfuTBgHFljKg+aekDCwfuf8XV9FjZI9UO17c/YaTx4GeG
EDqM7Sjd4axbv0HYc1xT9jwdZnmmm6c98TccZHyUgOzpsNaDAX5iH35D5t7W
a8EUOkzfofrp8vxv+GZa5rTRtk3z+ZK6GEDuh5btP3vmM7ZoCzduPuR63Q+t
7tqT/Yc2aJ9bew2HEweAFB/4RVpug0b+yCpZmTcAka1YmtPWOo3TzJMzp2IA
rKiH7foK12kcea/O5f4agDYR57ou8XWafA3zqIf0H2hvuJ/SPLlKY+xvdfmS
9gc6iT+tPz5dpjVz9vDnlQ5Cpo919jfPZZrL0tZ+jsZBuFbQtPWHukxTX02K
Cvo9CGLEiky2qSVayAe+8bhdQ+BISFq1MVmimWZEDX+zHoIhDZeEWYZFmq32
TQ6ZlSGYU/07pOA7Rzvhz8zCdWQYqs467tU5PEcTt7CUFD81DM9yOh4dkZ2j
reAHTMF/GLRVa7V9W2ZpUg13nVoyhsFfJfNepdoszVwtU4adbgTorFptS+un
aevsgTrrpSMgYdozIvtmnGa5S6g7Um8MLpK83n9xGKcpLpVpG9iMQbXI2t3z