-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtrain.py
419 lines (285 loc) · 16.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#!/usr/bin/python
from __future__ import print_function
### python lib
import os, sys, argparse, glob, re, math, copy, pickle
from datetime import datetime
import numpy as np
### torch lib
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
### custom lib
from networks.resample2d_package.modules.resample2d import Resample2d
import networks
import datasets
import utils
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fast Blind Video Temporal Consistency")
### model options
parser.add_argument('-model', type=str, default="TransformNet", help='TransformNet')
parser.add_argument('-nf', type=int, default=32, help='#Channels in conv layer')
parser.add_argument('-blocks', type=int, default=5, help='#ResBlocks')
parser.add_argument('-norm', type=str, default='IN', choices=["BN", "IN", "none"], help='normalization layer')
parser.add_argument('-model_name', type=str, default='none', help='path to save model')
### dataset options
parser.add_argument('-datasets_tasks', type=str, default='W3_D1_C1_I1', help='dataset-task pairs list')
parser.add_argument('-data_dir', type=str, default='data', help='path to data folder')
parser.add_argument('-list_dir', type=str, default='lists', help='path to lists folder')
parser.add_argument('-checkpoint_dir', type=str, default='checkpoints', help='path to checkpoint folder')
parser.add_argument('-crop_size', type=int, default=192, help='patch size')
parser.add_argument('-geometry_aug', type=int, default=1, help='geometry augmentation (rotation, scaling, flipping)')
parser.add_argument('-order_aug', type=int, default=1, help='temporal ordering augmentation')
parser.add_argument('-scale_min', type=float, default=0.5, help='min scaling factor')
parser.add_argument('-scale_max', type=float, default=2.0, help='max scaling factor')
parser.add_argument('-sample_frames', type=int, default=11, help='#frames for training')
### loss optinos
parser.add_argument('-alpha', type=float, default=50.0, help='alpha for computing visibility mask')
parser.add_argument('-loss', type=str, default="L1", help="optimizer [Options: SGD, ADAM]")
parser.add_argument('-w_ST', type=float, default=100, help='weight for short-term temporal loss')
parser.add_argument('-w_LT', type=float, default=100, help='weight for long-term temporal loss')
parser.add_argument('-w_VGG', type=float, default=10, help='weight for VGG perceptual loss')
parser.add_argument('-VGGLayers', type=str, default="4", help="VGG layers for perceptual loss, combinations of 1, 2, 3, 4")
### training options
parser.add_argument('-solver', type=str, default="ADAM", choices=["SGD", "ADAIM"], help="optimizer")
parser.add_argument('-momentum', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('-beta1', type=float, default=0.9, help='beta1 for ADAM')
parser.add_argument('-beta2', type=float, default=0.999, help='beta2 for ADAM')
parser.add_argument('-weight_decay', type=float, default=0, help='weight decay')
parser.add_argument('-batch_size', type=int, default=4, help='training batch size')
parser.add_argument('-train_epoch_size',type=int, default=1000, help='train epoch size')
parser.add_argument('-valid_epoch_size',type=int, default=100, help='valid epoch size')
parser.add_argument('-epoch_max', type=int, default=100, help='max #epochs')
### learning rate options
parser.add_argument('-lr_init', type=float, default=1e-4, help='initial learning Rate')
parser.add_argument('-lr_offset', type=int, default=20, help='epoch to start learning rate drop [-1 = no drop]')
parser.add_argument('-lr_step', type=int, default=20, help='step size (epoch) to drop learning rate')
parser.add_argument('-lr_drop', type=float, default=0.5, help='learning rate drop ratio')
parser.add_argument('-lr_min_m', type=float, default=0.1, help='minimal learning Rate multiplier (lr >= lr_init * lr_min)')
### other options
parser.add_argument('-seed', type=int, default=9487, help='random seed to use')
parser.add_argument('-threads', type=int, default=8, help='number of threads for data loader to use')
parser.add_argument('-suffix', type=str, default='', help='name suffix')
parser.add_argument('-gpu', type=int, default=0, help='gpu device id')
parser.add_argument('-cpu', action='store_true', help='use cpu?')
opts = parser.parse_args()
### adjust options
opts.cuda = (opts.cpu != True)
opts.lr_min = opts.lr_init * opts.lr_min_m
### default model name
if opts.model_name == 'none':
opts.model_name = "%s_B%d_nf%d_%s" %(opts.model, opts.blocks, opts.nf, opts.norm)
opts.model_name = "%s_T%d_%s_pw%d_%sLoss_a%s_wST%s_wHT%s_wVGG%s_L%s_%s_lr%s_off%d_step%d_drop%s_min%s_es%d_bs%d" \
%(opts.model_name, opts.sample_frames, \
opts.datasets_tasks, opts.crop_size, opts.loss, str(opts.alpha), \
str(opts.w_ST), str(opts.w_LT), str(opts.w_VGG), opts.VGGLayers, \
opts.solver, str(opts.lr_init), opts.lr_offset, opts.lr_step, str(opts.lr_drop), str(opts.lr_min), \
opts.train_epoch_size, opts.batch_size)
### check VGG layers
opts.VGGLayers = [int(layer) for layer in list(opts.VGGLayers)]
opts.VGGLayers.sort()
if opts.VGGLayers[0] < 1 or opts.VGGLayers[-1] > 4:
raise Exception("Only support VGG Loss on Layers 1 ~ 4")
opts.VGGLayers = [layer - 1 for layer in list(opts.VGGLayers)] ## shift index to 0 ~ 3
if opts.suffix != "":
opts.model_name += "_%s" %opts.suffix
opts.size_multiplier = 2 ** 6 ## Inputs to FlowNet need to be divided by 64
print(opts)
torch.manual_seed(opts.seed)
if opts.cuda:
torch.cuda.manual_seed(opts.seed)
### model saving directory
opts.model_dir = os.path.join(opts.checkpoint_dir, opts.model_name)
print("========================================================")
print("===> Save model to %s" %opts.model_dir)
print("========================================================")
if not os.path.isdir(opts.model_dir):
os.makedirs(opts.model_dir)
### initialize model
print('===> Initializing model from %s...' %opts.model)
model = networks.__dict__[opts.model](opts, nc_in=12, nc_out=3)
### initialize optimizer
if opts.solver == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=opts.lr_init, momentum=opts.momentum, weight_decay=opts.weight_decay)
elif opts.solver == 'ADAM':
optimizer = optim.Adam(model.parameters(), lr=opts.lr_init, weight_decay=opts.weight_decay, betas=(opts.beta1, opts.beta2))
else:
raise Exception("Not supported solver (%s)" %opts.solver)
### resume latest model
name_list = glob.glob(os.path.join(opts.model_dir, "model_epoch_*.pth"))
epoch_st = 0
if len(name_list) > 0:
epoch_list = []
for name in name_list:
s = re.findall(r'\d+', os.path.basename(name))[0]
epoch_list.append(int(s))
epoch_list.sort()
epoch_st = epoch_list[-1]
if epoch_st > 0:
print('=====================================================================')
print('===> Resuming model from epoch %d' %epoch_st)
print('=====================================================================')
### resume latest model and solver
model, optimizer = utils.load_model(model, optimizer, opts, epoch_st)
else:
### save epoch 0
utils.save_model(model, optimizer, opts)
print(model)
num_params = utils.count_network_parameters(model)
print('\n=====================================================================')
print("===> Model has %d parameters" %num_params)
print('=====================================================================')
### initialize loss writer
loss_dir = os.path.join(opts.model_dir, 'loss')
loss_writer = SummaryWriter(loss_dir)
### Load pretrained FlowNet2
opts.rgb_max = 1.0
opts.fp16 = False
FlowNet = networks.FlowNet2(opts, requires_grad=False)
model_filename = os.path.join("pretrained_models", "FlowNet2_checkpoint.pth.tar")
print("===> Load %s" %model_filename)
checkpoint = torch.load(model_filename)
FlowNet.load_state_dict(checkpoint['state_dict'])
### Load pretrained VGG
VGG = networks.Vgg16(requires_grad=False)
### convert to GPU
device = torch.device("cuda" if opts.cuda else "cpu")
model = model.to(device)
FlowNet = FlowNet.to(device)
VGG = VGG.to(device)
model.train()
### create dataset
train_dataset = datasets.MultiFramesDataset(opts, "train")
### start training
while model.epoch < opts.epoch_max:
model.epoch += 1
### re-generate train data loader for every epoch
data_loader = utils.create_data_loader(train_dataset, opts, "train")
### update learning rate
current_lr = utils.learning_rate_decay(opts, model.epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr
## submodule
flow_warping = Resample2d().to(device)
downsampler = nn.AvgPool2d((2, 2), stride=2).to(device)
### criterion and loss recorder
if opts.loss == 'L2':
criterion = nn.MSELoss(size_average=True)
elif opts.loss == 'L1':
criterion = nn.L1Loss(size_average=True)
else:
raise Exception("Unsupported criterion %s" %opts.loss)
### start epoch
ts = datetime.now()
for iteration, batch in enumerate(data_loader, 1):
total_iter = (model.epoch - 1) * opts.train_epoch_size + iteration
### convert data to cuda
frame_i = []
frame_p = []
for t in range(opts.sample_frames):
frame_i.append(batch[t * 2].to(device))
frame_p.append(batch[t * 2 + 1].to(device))
frame_o = []
frame_o.append(frame_p[0]) ## first frame
### get batch time
data_time = datetime.now() - ts
ts = datetime.now()
### clear gradients
optimizer.zero_grad()
lstm_state = None
ST_loss = 0
LT_loss = 0
VGG_loss = 0
### forward
for t in range(1, opts.sample_frames):
frame_i1 = frame_i[t - 1]
frame_i2 = frame_i[t]
frame_p2 = frame_p[t]
if t == 1:
frame_o1 = frame_p[t - 1]
else:
frame_o1 = frame_o2.detach() ## previous output frame
frame_o1.requires_grad = False
### model input
inputs = torch.cat((frame_p2, frame_o1, frame_i2, frame_i1), dim=1)
### forward model
output, lstm_state = model(inputs, lstm_state)
### residual learning
frame_o2 = output + frame_p2
## detach from graph and avoid memory accumulation
lstm_state = utils.repackage_hidden(lstm_state)
frame_o.append(frame_o2)
### short-term temporal loss
if opts.w_ST > 0:
### compute flow (from I2 to I1)
flow_i21 = FlowNet(frame_i2, frame_i1)
### warp I1 and O1
warp_i1 = flow_warping(frame_i1, flow_i21)
warp_o1 = flow_warping(frame_o1, flow_i21)
### compute non-occlusion mask: exp(-alpha * || F_i2 - Warp(F_i1) ||^2 )
noc_mask2 = torch.exp( -opts.alpha * torch.sum(frame_i2 - warp_i1, dim=1).pow(2) ).unsqueeze(1)
ST_loss += opts.w_ST * criterion(frame_o2 * noc_mask2, warp_o1 * noc_mask2)
### perceptual loss
if opts.w_VGG > 0:
### normalize
frame_o2_n = utils.normalize_ImageNet_stats(frame_o2)
frame_p2_n = utils.normalize_ImageNet_stats(frame_p2)
### extract VGG features
features_p2 = VGG(frame_p2_n, opts.VGGLayers[-1])
features_o2 = VGG(frame_o2_n, opts.VGGLayers[-1])
VGG_loss_all = []
for l in opts.VGGLayers:
VGG_loss_all.append( criterion(features_o2[l], features_p2[l]) )
VGG_loss += opts.w_VGG * sum(VGG_loss_all)
## end of forward
### long-term temporal loss
if opts.w_LT > 0:
t1 = 0
for t2 in range(t1 + 2, opts.sample_frames):
frame_i1 = frame_i[t1]
frame_i2 = frame_i[t2]
frame_o1 = frame_o[t1].detach() ## make a new Variable to avoid backwarding gradient
frame_o1.requires_grad = False
frame_o2 = frame_o[t2]
### compute flow (from I2 to I1)
flow_i21 = FlowNet(frame_i2, frame_i1)
### warp I1 and O1
warp_i1 = flow_warping(frame_i1, flow_i21)
warp_o1 = flow_warping(frame_o1, flow_i21)
### compute non-occlusion mask: exp(-alpha * || F_i2 - Warp(F_i1) ||^2 )
noc_mask2 = torch.exp( -opts.alpha * torch.sum(frame_i2 - warp_i1, dim=1).pow(2) ).unsqueeze(1)
LT_loss += opts.w_LT * criterion(frame_o2 * noc_mask2, warp_o1 * noc_mask2)
### end of t2
### end of w_LT
### overall loss
overall_loss = ST_loss + LT_loss + VGG_loss
### backward loss
overall_loss.backward()
### update parameters
optimizer.step()
network_time = datetime.now() - ts
### print training info
info = "[GPU %d]: " %(opts.gpu)
info += "Epoch %d; Batch %d / %d; " %(model.epoch, iteration, len(data_loader))
info += "lr = %s; " %(str(current_lr))
## number of samples per second
batch_freq = opts.batch_size / (data_time.total_seconds() + network_time.total_seconds())
info += "data loading = %.3f sec, network = %.3f sec, batch = %.3f Hz\n" %(data_time.total_seconds(), network_time.total_seconds(), batch_freq)
info += "\tmodel = %s\n" %opts.model_name
### print and record loss
if opts.w_ST > 0:
loss_writer.add_scalar('ST_loss', ST_loss.item(), total_iter)
info += "\t\t%25s = %f\n" %("ST_loss", ST_loss.item())
if opts.w_LT > 0:
loss_writer.add_scalar('LT_loss', LT_loss.item(), total_iter)
info += "\t\t%25s = %f\n" %("LT_loss", LT_loss.item())
if opts.w_VGG > 0:
loss_writer.add_scalar('VGG_loss', VGG_loss.item(), total_iter)
info += "\t\t%25s = %f\n" %("VGG_loss", VGG_loss.item())
loss_writer.add_scalar('Overall_loss', overall_loss.item(), total_iter)
info += "\t\t%25s = %f\n" %("Overall_loss", overall_loss.item())
print(info)
### end of epoch
### save model
utils.save_model(model, optimizer, opts)