-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtrain.lua
446 lines (370 loc) · 17.1 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
-- usage example: DATA_ROOT=/path/to/data/ which_direction=BtoA name=expt1 th train.lua
--
-- code derived from https://github.com/soumith/dcgan.torch
--
require 'torch'
require 'nn'
require 'optim'
util = paths.dofile('util/util.lua')
require 'image'
require 'models'
opt = {
DATA_ROOT = '', -- path to images (should have subfolders 'train', 'val', etc)
batchSize = 1, -- # images in batch
loadSize = 286, -- scale images to this size
fineSize = 256, -- then crop to this size
ngf = 64, -- # of gen filters in first conv layer
ndf = 64, -- # of discrim filters in first conv layer
input_nc = 3, -- # of input image channels
output_nc = 3, -- # of output image channels
niter = 200, -- # of iter at starting learning rate
lr = 0.0002, -- initial learning rate for adam
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
flip = 1, -- if flip the images for data argumentation
display = 1, -- display samples while training. 0 = false
display_id = 10, -- display window id.
display_plot = 'errL1', -- which loss values to plot over time. Accepted values include a comma seperated list of: errL1, errG, and errD
gpu = 1, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = '', -- name of the experiment, should generally be passed on the command line
which_direction = 'AtoB', -- AtoB or BtoA
phase = 'train', -- train, val, test, etc
preprocess = 'regular', -- for special purpose preprocessing, e.g., for colorization, change this (selects preprocessing functions in util.lua)
nThreads = 2, -- # threads for loading data
save_epoch_freq = 50, -- save a model every save_epoch_freq epochs (does not overwrite previously saved models)
save_latest_freq = 5000, -- save the latest model every latest_freq sgd iterations (overwrites the previous latest model)
print_freq = 50, -- print the debug information every print_freq iterations
display_freq = 100, -- display the current results every display_freq iterations
save_display_freq = 5000, -- save the current display of results every save_display_freq_iterations
continue_train=0, -- if continue training, load the latest model: 1: true, 0: false
serial_batches = 0, -- if 1, takes images in order to make batches, otherwise takes them randomly
serial_batch_iter = 1, -- iter into serial image list
checkpoints_dir = './checkpoints', -- models are saved here
cudnn = 1, -- set to 0 to not use cudnn
condition_GAN = 1, -- set to 0 to use unconditional discriminator
use_GAN = 1, -- set to 0 to turn off GAN term
use_L1 = 1, -- set to 0 to turn off L1 term
which_model_netD = 'basic', -- selects model to use for netD
which_model_netG = 'unet', -- selects model to use for netG
n_layers_D = 0, -- only used if which_model_netD=='n_layers'
lambda = 100, -- weight on L1 term in objective
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
local input_nc = opt.input_nc
local output_nc = opt.output_nc
-- translation direction
local idx_A = nil
local idx_B = nil
if opt.which_direction=='AtoB' then
idx_A = {1, input_nc}
idx_B = {input_nc+1, input_nc+output_nc}
elseif opt.which_direction=='BtoA' then
idx_A = {input_nc+1, input_nc+output_nc}
idx_B = {1, input_nc}
else
error(string.format('bad direction %s',opt.which_direction))
end
if opt.display == 0 then opt.display = false end
opt.manualSeed = torch.random(1, 10000) -- fix seed
print("Random Seed: " .. opt.manualSeed)
torch.manualSeed(opt.manualSeed)
torch.setdefaulttensortype('torch.FloatTensor')
-- create data loader
local data_loader = paths.dofile('data/data.lua')
print('#threads...' .. opt.nThreads)
local data = data_loader.new(opt.nThreads, opt)
print("Dataset Size: ", data:size())
----------------------------------------------------------------------------
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m.bias:fill(0)
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
local ndf = opt.ndf
local ngf = opt.ngf
local real_label = 1
local fake_label = 0
function defineG(input_nc, output_nc, ngf)
local netG = nil
if opt.which_model_netG == "encoder_decoder" then netG = defineG_encoder_decoder(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "unet" then netG = defineG_unet(input_nc, output_nc, ngf)
elseif opt.which_model_netG == "unet_128" then netG = defineG_unet_128(input_nc, output_nc, ngf)
else error("unsupported netG model")
end
netG:apply(weights_init)
return netG
end
function defineD(input_nc, output_nc, ndf)
local netD = nil
if opt.condition_GAN==1 then
input_nc_tmp = input_nc
else
input_nc_tmp = 0 -- only penalizes structure in output channels
end
if opt.which_model_netD == "basic" then netD = defineD_basic(input_nc_tmp, output_nc, ndf)
elseif opt.which_model_netD == "n_layers" then netD = defineD_n_layers(input_nc_tmp, output_nc, ndf, opt.n_layers_D)
else error("unsupported netD model")
end
netD:apply(weights_init)
return netD
end
-- load saved models and finetune
if opt.continue_train == 1 then
print('loading previously trained netG...')
netG = util.load(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_G.t7'), opt)
print('loading previously trained netD...')
netD = util.load(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_D.t7'), opt)
else
print('define model netG...')
netG = defineG(input_nc, output_nc, ngf)
print('define model netD...')
netD = defineD(input_nc, output_nc, ndf)
end
print(netG)
print(netD)
local criterion = nn.BCECriterion()
local criterionAE = nn.AbsCriterion()
---------------------------------------------------------------------------
optimStateG = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
optimStateD = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
----------------------------------------------------------------------------
local real_A = torch.Tensor(opt.batchSize, input_nc, opt.fineSize, opt.fineSize)
local real_B = torch.Tensor(opt.batchSize, output_nc, opt.fineSize, opt.fineSize)
local fake_B = torch.Tensor(opt.batchSize, output_nc, opt.fineSize, opt.fineSize)
local real_AB = torch.Tensor(opt.batchSize, output_nc + input_nc*opt.condition_GAN, opt.fineSize, opt.fineSize)
local fake_AB = torch.Tensor(opt.batchSize, output_nc + input_nc*opt.condition_GAN, opt.fineSize, opt.fineSize)
local errD, errG, errL1 = 0, 0, 0
local epoch_tm = torch.Timer()
local tm = torch.Timer()
local data_tm = torch.Timer()
----------------------------------------------------------------------------
if opt.gpu > 0 then
print('transferring to gpu...')
require 'cunn'
cutorch.setDevice(opt.gpu)
real_A = real_A:cuda();
real_B = real_B:cuda(); fake_B = fake_B:cuda();
real_AB = real_AB:cuda(); fake_AB = fake_AB:cuda();
if opt.cudnn==1 then
netG = util.cudnn(netG); netD = util.cudnn(netD);
end
netD:cuda(); netG:cuda(); criterion:cuda(); criterionAE:cuda();
print('done')
else
print('running model on CPU')
end
local parametersD, gradParametersD = netD:getParameters()
local parametersG, gradParametersG = netG:getParameters()
if opt.display then disp = require 'display' end
function createRealFake()
-- load real
data_tm:reset(); data_tm:resume()
local real_data, data_path = data:getBatch()
data_tm:stop()
real_A:copy(real_data[{ {}, idx_A, {}, {} }])
real_B:copy(real_data[{ {}, idx_B, {}, {} }])
if opt.condition_GAN==1 then
real_AB = torch.cat(real_A,real_B,2)
else
real_AB = real_B -- unconditional GAN, only penalizes structure in B
end
-- create fake
fake_B = netG:forward(real_A)
if opt.condition_GAN==1 then
fake_AB = torch.cat(real_A,fake_B,2)
else
fake_AB = fake_B -- unconditional GAN, only penalizes structure in B
end
end
-- create closure to evaluate f(X) and df/dX of discriminator
local fDx = function(x)
netD:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
netG:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
gradParametersD:zero()
-- Real
local output = netD:forward(real_AB)
local label = torch.FloatTensor(output:size()):fill(real_label)
if opt.gpu>0 then
label = label:cuda()
end
local errD_real = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netD:backward(real_AB, df_do)
-- Fake
local output = netD:forward(fake_AB)
label:fill(fake_label)
local errD_fake = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
netD:backward(fake_AB, df_do)
errD = (errD_real + errD_fake)/2
return errD, gradParametersD
end
-- create closure to evaluate f(X) and df/dX of generator
local fGx = function(x)
netD:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
netG:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
gradParametersG:zero()
-- GAN loss
local df_dg = torch.zeros(fake_B:size())
if opt.gpu>0 then
df_dg = df_dg:cuda();
end
if opt.use_GAN==1 then
local output = netD.output -- netD:forward{input_A,input_B} was already executed in fDx, so save computation
local label = torch.FloatTensor(output:size()):fill(real_label) -- fake labels are real for generator cost
if opt.gpu>0 then
label = label:cuda();
end
errG = criterion:forward(output, label)
local df_do = criterion:backward(output, label)
df_dg = netD:updateGradInput(fake_AB, df_do):narrow(2,fake_AB:size(2)-output_nc+1, output_nc)
else
errG = 0
end
-- unary loss
local df_do_AE = torch.zeros(fake_B:size())
if opt.gpu>0 then
df_do_AE = df_do_AE:cuda();
end
if opt.use_L1==1 then
errL1 = criterionAE:forward(fake_B, real_B)
df_do_AE = criterionAE:backward(fake_B, real_B)
else
errL1 = 0
end
netG:backward(real_A, df_dg + df_do_AE:mul(opt.lambda))
return errG, gradParametersG
end
-- train
local best_err = nil
paths.mkdir(opt.checkpoints_dir)
paths.mkdir(opt.checkpoints_dir .. '/' .. opt.name)
-- save opt
file = torch.DiskFile(paths.concat(opt.checkpoints_dir, opt.name, 'opt.txt'), 'w')
file:writeObject(opt)
file:close()
-- parse diplay_plot string into table
opt.display_plot = string.split(string.gsub(opt.display_plot, "%s+", ""), ",")
for k, v in ipairs(opt.display_plot) do
if not util.containsValue({"errG", "errD", "errL1"}, v) then
error(string.format('bad display_plot value "%s"', v))
end
end
-- display plot config
local plot_config = {
title = "Loss over time",
labels = {"epoch", unpack(opt.display_plot)},
ylabel = "loss",
}
-- display plot vars
local plot_data = {}
local plot_win
local counter = 0
for epoch = 1, opt.niter do
epoch_tm:reset()
for i = 1, math.min(data:size(), opt.ntrain), opt.batchSize do
tm:reset()
-- load a batch and run G on that batch
createRealFake()
-- (1) Update D network: maximize log(D(x,y)) + log(1 - D(x,G(x)))
if opt.use_GAN==1 then optim.adam(fDx, parametersD, optimStateD) end
-- (2) Update G network: maximize log(D(x,G(x))) + L1(y,G(x))
optim.adam(fGx, parametersG, optimStateG)
-- display
counter = counter + 1
if counter % opt.display_freq == 0 and opt.display then
createRealFake()
if opt.preprocess == 'colorization' then
local real_A_s = util.scaleBatch(real_A:float(),100,100)
local fake_B_s = util.scaleBatch(fake_B:float(),100,100)
local real_B_s = util.scaleBatch(real_B:float(),100,100)
disp.image(util.deprocessL_batch(real_A_s), {win=opt.display_id, title=opt.name .. ' input'})
disp.image(util.deprocessLAB_batch(real_A_s, fake_B_s), {win=opt.display_id+1, title=opt.name .. ' output'})
disp.image(util.deprocessLAB_batch(real_A_s, real_B_s), {win=opt.display_id+2, title=opt.name .. ' target'})
else
disp.image(util.deprocess_batch(util.scaleBatch(real_A:float(),100,100)), {win=opt.display_id, title=opt.name .. ' input'})
disp.image(util.deprocess_batch(util.scaleBatch(fake_B:float(),100,100)), {win=opt.display_id+1, title=opt.name .. ' output'})
disp.image(util.deprocess_batch(util.scaleBatch(real_B:float(),100,100)), {win=opt.display_id+2, title=opt.name .. ' target'})
end
end
-- write display visualization to disk
-- runs on the first batchSize images in the opt.phase set
if counter % opt.save_display_freq == 0 and opt.display then
local serial_batches=opt.serial_batches
opt.serial_batches=1
opt.serial_batch_iter=1
local image_out = nil
local N_save_display = 10
local N_save_iter = torch.max(torch.Tensor({1, torch.floor(N_save_display/opt.batchSize)}))
for i3=1, N_save_iter do
createRealFake()
print('save to the disk')
if opt.preprocess == 'colorization' then
for i2=1, fake_B:size(1) do
if image_out==nil then image_out = torch.cat(util.deprocessL(real_A[i2]:float()),util.deprocessLAB(real_A[i2]:float(), fake_B[i2]:float()),3)/255.0
else image_out = torch.cat(image_out, torch.cat(util.deprocessL(real_A[i2]:float()),util.deprocessLAB(real_A[i2]:float(), fake_B[i2]:float()),3)/255.0, 2) end
end
else
for i2=1, fake_B:size(1) do
if image_out==nil then image_out = torch.cat(util.deprocess(real_A[i2]:float()),util.deprocess(fake_B[i2]:float()),3)
else image_out = torch.cat(image_out, torch.cat(util.deprocess(real_A[i2]:float()),util.deprocess(fake_B[i2]:float()),3), 2) end
end
end
end
image.save(paths.concat(opt.checkpoints_dir, opt.name , counter .. '_train_res.png'), image_out)
opt.serial_batches=serial_batches
end
-- logging and display plot
if counter % opt.print_freq == 0 then
local loss = {errG=errG and errG or -1, errD=errD and errD or -1, errL1=errL1 and errL1 or -1}
local curItInBatch = ((i-1) / opt.batchSize)
local totalItInBatch = math.floor(math.min(data:size(), opt.ntrain) / opt.batchSize)
print(('Epoch: [%d][%8d / %8d]\t Time: %.3f DataTime: %.3f '
.. ' Err_G: %.4f Err_D: %.4f ErrL1: %.4f'):format(
epoch, curItInBatch, totalItInBatch,
tm:time().real / opt.batchSize, data_tm:time().real / opt.batchSize,
errG, errD, errL1))
local plot_vals = { epoch + curItInBatch / totalItInBatch }
for k, v in ipairs(opt.display_plot) do
if loss[v] ~= nil then
plot_vals[#plot_vals + 1] = loss[v]
end
end
-- update display plot
if opt.display then
table.insert(plot_data, plot_vals)
plot_config.win = plot_win
plot_win = disp.plot(plot_data, plot_config)
end
end
-- save latest model
if counter % opt.save_latest_freq == 0 then
print(('saving the latest model (epoch %d, iters %d)'):format(epoch, counter))
torch.save(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_G.t7'), netG:clearState())
torch.save(paths.concat(opt.checkpoints_dir, opt.name, 'latest_net_D.t7'), netD:clearState())
end
end
parametersD, gradParametersD = nil, nil -- nil them to avoid spiking memory
parametersG, gradParametersG = nil, nil
if epoch % opt.save_epoch_freq == 0 then
torch.save(paths.concat(opt.checkpoints_dir, opt.name, epoch .. '_net_G.t7'), netG:clearState())
torch.save(paths.concat(opt.checkpoints_dir, opt.name, epoch .. '_net_D.t7'), netD:clearState())
end
print(('End of epoch %d / %d \t Time Taken: %.3f'):format(
epoch, opt.niter, epoch_tm:time().real))
parametersD, gradParametersD = netD:getParameters() -- reflatten the params and get them
parametersG, gradParametersG = netG:getParameters()
end