forked from patrickloeber/pytorchTutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
05_2_gradientdescent_auto.py
49 lines (34 loc) · 1.05 KB
/
05_2_gradientdescent_auto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
# Here we replace the manually computed gradient with autograd
# Linear regression
# f = w * x
# here : f = 2 * x
X = torch.tensor([1, 2, 3, 4], dtype=torch.float32)
Y = torch.tensor([2, 4, 6, 8], dtype=torch.float32)
w = torch.tensor(0.0, dtype=torch.float32, requires_grad=True)
# model output
def forward(x):
return w * x
# loss = MSE
def loss(y, y_pred):
return ((y_pred - y)**2).mean()
print(f'Prediction before training: f(5) = {forward(5).item():.3f}')
# Training
learning_rate = 0.01
n_iters = 100
for epoch in range(n_iters):
# predict = forward pass
y_pred = forward(X)
# loss
l = loss(Y, y_pred)
# calculate gradients = backward pass
l.backward()
# update weights
#w.data = w.data - learning_rate * w.grad
with torch.no_grad():
w -= learning_rate * w.grad
# zero the gradients after updating
w.grad.zero_()
if epoch % 10 == 0:
print(f'epoch {epoch+1}: w = {w.item():.3f}, loss = {l.item():.8f}')
print(f'Prediction after training: f(5) = {forward(5).item():.3f}')