forked from earhian/Humpback-Whale-Identification-1st-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
102 lines (88 loc) · 3.43 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import pandas as pd
import numpy as np
import os
import torch
from tqdm import tqdm
from models import *
from dataSet import *
import os
import shutil
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
num_TTA = 2
def train_collate(batch):
batch_size = len(batch)
images = [
]
names = []
for b in range(batch_size):
if batch[b][0] is None:
continue
else:
images.extend(batch[b][0])
names.append(batch[b][1])
images = torch.stack(images, 0)
return images, names
def transform(image, mask):
raw_iamge = cv2.resize(image, (512, 256))
raw_mask = cv2.resize(mask, (512, 256))
raw_mask = raw_mask[:, :, None]
raw_iamge = np.concatenate([raw_iamge, raw_mask], 2)
images = []
image = raw_iamge.copy()
image = np.transpose(image, (2, 0, 1))
image = image.copy().astype(np.float)
image = torch.from_numpy(image).div(255).float()
images.append(image)
image = raw_iamge.copy()
image = np.fliplr(image)
image = np.transpose(image, (2, 0, 1))
image = image.copy().astype(np.float)
image = torch.from_numpy(image).div(255).float()
images.append(image)
return images
def test(checkPoint_start=0, fold_index=1, model_name='senet154'):
names_test = os.listdir('./input/test')
batch_size = 16
dst_test = WhaleTestDataset(names_test, mode='test', transform=transform)
dataloader_test = DataLoader(dst_test, batch_size=batch_size, num_workers=8, collate_fn=train_collate)
label_id = dst_test.labels_dict
id_label = {v:k for k, v in label_id.items()}
id_label[5004] = 'new_whale'
model = model_whale(num_classes=5004 * 2, inchannels=4, model_name=model_name).cuda()
resultDir = './result/{}_{}'.format(model_name, fold_index)
checkPoint = os.path.join(resultDir, 'checkpoint')
npy_dir = resultDir + '/out_{}'.format(checkPoint_start)
os.makedirs(npy_dir, exist_ok=True)
if not checkPoint_start == 0:
model.load_pretrain(os.path.join(checkPoint, '%08d_model.pth' % (checkPoint_start)),skip=[])
ckp = torch.load(os.path.join(checkPoint, '%08d_optimizer.pth' % (checkPoint_start)))
best_t = ckp['best_t']
print('best_t:', best_t)
labelstrs = []
allnames = []
with torch.no_grad():
model.eval()
for data in tqdm(dataloader_test):
images, names = data
images = images.cuda()
_, _, outs = model(images)
outs = torch.sigmoid(outs)
outs_zero = (outs[::2, :5004] + outs[1::2, 5004:])/2
outs = outs_zero
for out, name in zip(outs, names):
out = torch.cat([out, torch.ones(1).cuda()*best_t], 0)
out = out.data.cpu().numpy()
np.save(os.path.join(npy_dir, '{}.npy'.format(name)), out)
top5 = out.argsort()[-5:][::-1]
str_top5 = ''
for t in top5:
str_top5 += '{} '.format(id_label[t])
str_top5 = str_top5[:-1]
allnames.append(name)
labelstrs.append(str_top5)
pd.DataFrame({'Image': allnames,'Id': labelstrs}).to_csv('test_{}_sub_fold{}.csv'.format(model_name, fold_index), index=None)
if __name__ == '__main__':
checkPoint_start = 0
fold_index = 1
model_name = 'senet154'
test(checkPoint_start, fold_index, model_name)