Skip to content

Latest commit

 

History

History
152 lines (117 loc) · 5.56 KB

README.md

File metadata and controls

152 lines (117 loc) · 5.56 KB

Hybrid Models for Learning to Branch

Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

This is the official implementation of our NeurIPS 2020 paper

Installation

This work is built upon learn2branch, which proposes Graph Neural Network for learning to branch. We use it as a git submodule. Follow installation instructions of learn2branch to install SCIP and PySCIPOpt.

UPDATE As pointed out in PR#2, a function needs to be added in the class Column of PySCIPOpt. Please add the following function there before installation of PySCIPOpt-

def getIndex(self):
  return SCIPcolGetIndex(self.scip_col)

Following python dependencies were used to run the code in this repository

torch==1.4.0.dev20191031
scipy==1.5.2
numpy==1.18.1
networkx==2.4
Cython==0.29.13
PySCIPOpt==2.1.5
scikit-learn==0.20.2

To setup this repo, follow

git clone https://github.com/pg2455/Hybrid-learn2branch.git
cd Hybrid-learn2branch
git submodule update --init

How to run it?

In the instructions below we assumed that a bash variable PROBLEM exists. For example,

PROBLEM=setcover

Below instructions assume access to data/ folder in the repo. Please look at the argument flags in each of the script to use another folder.

Generate Instances

# generate instances
python learn2branch/01_generate_instances.py $PROBLEM

Generate dataset

# generate dataset
python 02_generate_dataset.py $PROBLEM

Train models

# GNN
python 03_train_gcnn_torch.py $PROBLEM # PyTorch version of learn2branch GNN

# COMP
python learn2branch/03_train_competitor.py $PROBLEM -m extratrees --hybrid_data_structure
python learn2branch/03_train_competitor.py $PROBLEM -m svmrank --hybrid_data_structure
python learn2branch/03_train_competitor.py $PROBLEM -m lambdamart --hybrid_data_structure

# MLP
python 03_train_mlp.py $PROBLEM

# Hybrid models
python 03_train_hybrid.py $PROBLEM -m concat --no_e2e # (pre)
python 03_train_hybrid.py $PROBLEM -m concat --no_e2e --distilled # (pre + KD)

python 03_train_hybrid.py $PROBLEM -m film --no_e2e # (pre)
python 03_train_hybrid.py $PROBLEM -m film --no_e2e --distilled # (pre + KD)

## CONCAT
python 03_train_hybrid.py $PROBLEM -m concat # (e2e)
python 03_train_hybrid.py $PROBLEM -m concat --distilled # (e2e + KD)

## FILM
python 03_train_hybrid.py $PROBLEM -m film # (e2e)
python 03_train_hybrid.py $PROBLEM -m film --distilled # (e2e + KD)

## HybridSVM
python 03_train_hybrid.py $PROBLEM -m hybridsvm # (e2e)
python 03_train_hybrid.py $PROBLEM -m hybridsvm --distilled  # (e2e + KD)

## HybridSVM-FiLM
python 03_train_hybrid.py $PROBLEM -m hybridsvm-film # (e2e)
python 03_train_hybrid.py $PROBLEM -m hybridsvm-film --distilled  # (e2e + KD)

# Auxiliary task (AT)
python 03_train_hybrid.py $PROBLEM -m film --at ED --beta_at 0.001 # (e2e + AT)
python 03_train_hybrid.py $PROBLEM -m film --distilled --at ED --beta_at 0.001 # (e2e + KD + AT)

# l2 regularization
python 03_train_hybrid.py $PROBLEM -m film --at ED --beta_at 0.001 --l2 0.001

Test model performance

# test models

python 04_test_gcnn_torch.py $PROBLEM # GNN
python 04_test_mlp.py $PROBLEM # MLP

# ml-comp (COMP is the one with best accuracy)
python learn2branch/04_test.py $PROBLEM --no_gnn --ml_comp_brancher svmrank_khalil --hybrid_data_structure
python learn2branch/04_test.py $PROBLEM --no_gnn --ml_comp_brancher lambdamark_khalil --hybrid_data_structure
python learn2branch/04_test.py $PROBLEM --no_gnn --ml_comp_brancher extratrees_gcnn_agg --hybrid_data_structure

# Hybrid models
python 04_test_hybrid.py $PROBLEM # tests all available hybrid models in trained_models/$PROBLEM

Evaluate models

# evaluate models

python 05_evaluate_gcnn_torch.py $PROBLEM -g -1 # GNN-CPU
python 05_evaluate_gcnn_torch.py $PROBLEM -g 0 # GNN-GPU
python 05_evaluate_mlp.py $PROBLEM -g -1

# COMP
python learn2branch/05_evaluate.py $PROBLEM --ml_comp_brancher use_best_performing_ml_competitor_folder_name --time_limit 2700 --no_gnn --hybrid_data_structure -g -1


# FiLM
python 05_evaluate_hybrid.py $PROBLEM -g -1 --model_string use_best_performing_model_folder_name


# internal branchers
python learn2branch/05_evaluate.py $PROBLEM --internal_brancher pscost --time_limit 2700 --no_gnn -g -1 --hybrid_data_structure # PB
python learn2branch/05_evaluate.py $PROBLEM --internal_brancher relpscost --time_limit 2700 --no_gnn  -g -1 --hybrid_data_structure # RPB
python learn2branch/05_evaluate.py $PROBLEM --internal_brancher fullstrong --time_limit 2700 --no_gnn  -g -1 --hybrid_data_structure # FSB

Follow instructions here to reproduce the evaluation results (Table 4).

Citation

Please cite our paper if you use this code in your work.

@inproceedings{conf/nips/Gupta20hybrid,
  title={Hybrid Models for Learning to Branch},
  author={Gupta, Prateek and Gasse, Maxime and Khalil, Elias B and Kumar, M Pawan and Lodi, Andrea and Bengio, Yoshua},
  booktitle={Advances in Neural Information Processing Systems 33},
  year={2020}
}

Questions / Bugs

Please feel free to submit a Github issue if you have any questions or find any bugs. We do not guarantee any support, but will do our best if we can help.