-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathUCCH.py
264 lines (229 loc) · 10 KB
/
UCCH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
seed = 123
import numpy as np
from sympy import arg
np.random.seed(seed)
import random as rn
rn.seed(seed)
import os
os.environ['PYTHONHASHSEED'] = str(seed)
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
import torch
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
from utils.config import args
import time
from datetime import datetime
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
cudnn.benchmark = True
import nets as models
# from utils.preprocess import *
from utils.bar_show import progress_bar
import pdb
from src.cmdataset import CMDataset
import scipy
import scipy.spatial
import torch.nn as nn
import src.utils as utils
from NCE.NCEAverage import NCEAverage
from NCE.NCECriterion import NCESoftmaxLoss
from torch.nn.utils.clip_grad import clip_grad_norm
# --pretrain --arch resnet18
device_ids = [0, 1]
teacher_device_id = [0, 1]
best_acc = 0 # best test accuracy
start_epoch = 0
args.log_dir = os.path.join(args.root_dir, 'logs', args.log_name)
args.ckpt_dir = os.path.join(args.root_dir, 'ckpt', args.pretrain_dir)
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.ckpt_dir, exist_ok=True)
def main():
print('===> Preparing data ..')
# build data
train_dataset = CMDataset(
args.data_name,
return_index=True
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
num_workers=args.num_workers,
shuffle=True,
pin_memory=True,
drop_last=True
)
retrieval_dataset = CMDataset(
args.data_name,
partition='retrieval'
)
retrieval_loader = torch.utils.data.DataLoader(
retrieval_dataset,
batch_size=args.eval_batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
test_dataset = CMDataset(
args.data_name,
partition='test'
)
query_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.eval_batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
print('===> Building ResNet..')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if 'fea' in args.data_name:
image_model = models.__dict__['ImageNet'](y_dim=train_dataset.imgs.shape[1], bit=args.bit, hiden_layer=args.num_hiden_layers[0]).cuda()
backbone = None
else:
backbone = models.__dict__[args.arch](pretrained=args.pretrain, feature=True).cuda()
fea_net = models.__dict__['ImageNet'](y_dim=4096 if 'vgg' in args.arch.lower() else (512 if args.arch == 'resnet18' or args.arch == 'resnet34' else 2048), bit=args.bit, hiden_layer=args.num_hiden_layers[0]).cuda()
image_model = nn.Sequential(backbone, fea_net)
text_model = models.__dict__['TextNet'](y_dim=train_dataset.text_dim, bit=args.bit, hiden_layer=args.num_hiden_layers[1]).cuda()
parameters = list(image_model.parameters()) + list(text_model.parameters())
wd = args.wd
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=0.9, weight_decay=wd)
elif args.optimizer == 'Adam':
optimizer = torch.optim.Adam(parameters, lr=args.lr, weight_decay=wd)
if args.ls == 'cos':
lr_schedu = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.max_epochs, eta_min=0, last_epoch=-1)
else:
lr_schedu = optim.lr_scheduler.MultiStepLR(optimizer, [30, 60, 90, 120], gamma=0.1)
summary_writer = SummaryWriter(args.log_dir)
if args.resume:
ckpt = torch.load(os.path.join(args.ckpt_dir, args.resume))
image_model.load_state_dict(ckpt['image_model_state_dict'])
text_model.load_state_dict(ckpt['text_model_state_dict'])
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
start_epoch = ckpt['epoch']
print('===> Load last checkpoint data')
else:
start_epoch = 0
print('===> Start from scratch')
def set_train(is_warmup=False):
image_model.train()
if is_warmup and backbone:
backbone.eval()
backbone.requires_grad_(False)
elif backbone:
backbone.requires_grad_(True)
text_model.train()
def set_eval():
image_model.eval()
text_model.eval()
criterion = utils.ContrastiveLoss(args.margin, shift=args.shift)
n_data = len(train_loader.dataset)
contrast = NCEAverage(args.bit, n_data, args.K, args.T, args.momentum)
criterion_contrast = NCESoftmaxLoss()
contrast = contrast.cuda()
criterion_contrast = criterion_contrast.cuda()
def train(epoch):
print('\nEpoch: %d / %d' % (epoch, args.max_epochs))
set_train(epoch < args.warmup_epoch)
# set_train(True)
train_loss, correct, total = 0., 0., 0.
for batch_idx, (idx, images, texts, _) in enumerate(train_loader):
images, texts, idx = [img.cuda() for img in images], [txt.cuda() for txt in texts], [idx.cuda()]
images_outputs = [image_model(im) for im in images]
texts_outputs = [text_model(txt.float()) for txt in texts]
out_l, out_ab = contrast(torch.cat(images_outputs), torch.cat(texts_outputs), torch.cat(idx * len(images)), epoch=epoch-args.warmup_epoch)
l_loss = criterion_contrast(out_l)
ab_loss = criterion_contrast(out_ab)
Lc = l_loss + ab_loss
Lr = criterion(torch.cat(images_outputs), torch.cat(texts_outputs))
loss = Lc * args.alpha + Lr * (1. - args.alpha)
optimizer.zero_grad()
loss.backward()
clip_grad_norm(parameters, 1.)
optimizer.step()
train_loss += loss.item()
progress_bar(batch_idx, len(train_loader), 'Loss: %.3f | LR: %g'
% (train_loss / (batch_idx + 1), optimizer.param_groups[0]['lr']))
if batch_idx % args.log_interval == 0: #every log_interval mini_batches...
summary_writer.add_scalar('Loss/train', train_loss / (batch_idx + 1), epoch * len(train_loader) + batch_idx)
summary_writer.add_scalar('learning rate', optimizer.param_groups[0]['lr'], epoch * len(train_loader) + batch_idx)
def eval(data_loader):
imgs, txts, labs = [], [], []
with torch.no_grad():
for batch_idx, (images, texts, targets) in enumerate(data_loader):
images, texts, targets = [img.cuda() for img in images], [txt.cuda() for txt in texts], targets.cuda()
images_outputs = [image_model(im) for im in images]
texts_outputs = [text_model(txt.float()) for txt in texts]
imgs += images_outputs
txts += texts_outputs
labs.append(targets)
imgs = torch.cat(imgs).sign_().cpu().numpy()
txts = torch.cat(txts).sign_().cpu().numpy()
labs = torch.cat(labs).cpu().numpy()
return imgs, txts, labs
def test(epoch, is_eval=True):
# pass
global best_acc
set_eval()
# switch to evaluate mode
(retrieval_imgs, retrieval_txts, retrieval_labs) = eval(retrieval_loader)
if is_eval:
query_imgs, query_txts, query_labs = retrieval_imgs[0: 2000], retrieval_txts[0: 2000], retrieval_labs[0: 2000]
retrieval_imgs, retrieval_txts, retrieval_labs = retrieval_imgs[0: 2000], retrieval_txts[0: 2000], retrieval_labs[0: 2000]
else:
(query_imgs, query_txts, query_labs) = eval(query_loader)
i2t = fx_calc_map_multilabel_k(retrieval_txts, retrieval_labs, query_imgs, query_labs, k=0, metric='hamming')
t2i = fx_calc_map_multilabel_k(retrieval_imgs, retrieval_labs, query_txts, query_labs, k=0, metric='hamming')
avg = (i2t + t2i) / 2.
print('%s\nImg2Txt: %g \t Txt2Img: %g \t Avg: %g' % ('Evaluation' if is_eval else 'Test',i2t, t2i, (i2t + t2i) / 2.))
if avg > best_acc:
print('Saving..')
state = {
'image_model_state_dict': image_model.state_dict(),
'text_model_state_dict': text_model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'Avg': avg,
'Img2Txt': i2t,
'Txt2Img': t2i,
'epoch': epoch,
}
torch.save(state, os.path.join(args.ckpt_dir, '%s_%d_best_checkpoint.t7' % (args.arch, args.bit)))
best_acc = avg
return i2t, t2i
lr_schedu.step(start_epoch)
for epoch in range(start_epoch, args.max_epochs):
train(epoch)
lr_schedu.step(epoch)
i2t, t2i = test(epoch)
avg = (i2t + t2i) / 2.
if avg == best_acc:
image_model_state_dict = image_model.state_dict()
image_model_state_dict = {key: image_model_state_dict[key].clone() for key in image_model_state_dict}
text_model_state_dict = text_model.state_dict()
text_model_state_dict = {key: text_model_state_dict[key].clone() for key in text_model_state_dict}
chp = torch.load(os.path.join(args.ckpt_dir, '%s_%d_best_checkpoint.t7' % (args.arch, args.bit)))
image_model.load_state_dict(image_model_state_dict)
text_model.load_state_dict(text_model_state_dict)
test(chp['epoch'], is_eval=False)
summary_writer.close()
# pdb.set_trace()
def fx_calc_map_multilabel_k(retrieval, retrieval_labels, query, query_label, k=0, metric='cosine'):
dist = scipy.spatial.distance.cdist(query, retrieval, metric)
ord = dist.argsort()
numcases = dist.shape[0]
if k == 0:
k = dist.shape[1]
res = []
for i in range(numcases):
order = ord[i].reshape(-1)[0: k]
tmp_label = (np.dot(retrieval_labels[order], query_label[i]) > 0)
if tmp_label.sum() > 0:
prec = tmp_label.cumsum() / np.arange(1.0, 1 + tmp_label.shape[0])
total_pos = float(tmp_label.sum())
if total_pos > 0:
res += [np.dot(tmp_label, prec) / total_pos]
return np.mean(res)
if __name__ == '__main__':
main()