-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
95 lines (85 loc) · 3.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch.nn as nn
import torch.nn.functional as F
import torch
import utils_PyTorch as utils
class Text_CNN_list(nn.Module):
"""Generator for transfering from svhn to mnist"""
def __init__(self, mode, word_dim, vocab_size, out_dim, filters, filter_num, dropout_prob, wv_matrix, in_channel=1, mid=1024, one_layer=False):
super(Text_CNN_list, self).__init__()
self.mode = mode
self.word_dim = word_dim
self.vocab_size = vocab_size
self.out_dim = out_dim
self.filters = filters
self.filter_num = filter_num
self.dropout_prob = dropout_prob
self.in_channel = in_channel
self.one_layer = one_layer
assert (len(self.filters) == len(self.filter_num))
self.embedding = nn.Embedding(self.vocab_size + 2, self.word_dim, padding_idx=self.vocab_size + 1)
if self.mode == "static" or self.mode == 'non-static' or self.mode == 'multichannel':
self.wv_matrix = wv_matrix
self.embedding.weight.data.copy_(torch.from_numpy(self.wv_matrix))
if self.mode == 'static':
self.embedding.weight.requires_grad = False
elif self.mode == 'multichannel':
self.embedding2 = nn.Embedding(self.vocab_size + 2, self.word_dim, padding_idx=self.vocab_size + 1)
self.embedding2.weight.data.copy_(torch.from_numpy(self.wv_matrix))
self.embedding2.weight.requires_grad = False
self.in_channel = 2
self.convs1 = nn.ModuleList([nn.Conv2d(self.in_channel, out_channel, (K, self.word_dim)) for out_channel, K in zip(self.filter_num, self.filters)])
# self.dropout = nn.Dropout(self.dropout_prob)
# self.fc = nn.Linear(sum(self.filter_num), self.out_dim)
if not one_layer:
self.fc1 = nn.Linear(sum(self.filter_num), mid)
self.fc2 = nn.Linear(mid, out_dim)
# self.fc2 = nn.Linear(1024, out_dim)
def forward(self, x):
out = self.embedding(x).unsqueeze(1)
if self.mode == 'multichannel':
out2 = self.embedding2(x).unsqueeze(1)
out = torch.cat((out, out2), 1)
out = [F.relu(_conv(out)).squeeze(3) for _conv in self.convs1]
out = [F.max_pool1d(o, o.size(2)).squeeze(2) for o in out]
out1 = torch.cat(out, 1)
# out = self.dropout(out)
if not self.one_layer:
out2 = F.relu(self.fc1(out1))
# out3 = self.fc2(out1)
# return [out1, out3]
out3 = self.fc2(out2)
return [out1, out2, out3]
else:
return [out1]
class Dense_Net(nn.Module):
def __init__(self, input_dim=28*28, out_dim=20, mid=1024, one_layer=False):
super(Dense_Net, self).__init__()
self.one_layer = one_layer
self.fc1 = nn.Linear(input_dim, mid)
# self.fc2 = nn.Linear(mid_num, out_dim)
if not one_layer:
self.fc2 = nn.Linear(mid, mid)
self.fc3 = nn.Linear(mid, out_dim)
def forward(self, x):
out1 = F.relu(self.fc1(x))
if not self.one_layer:
out2 = F.relu(self.fc2(out1))
out3 = self.fc3(out2)
return [out1, out2, out3]
else:
return [out1]
class D(nn.Module):
def __init__(self, dim=20, view=2):
super(D, self).__init__()
self.dim = dim
self.n_view = view
mid_dim = 128
self.fc1 = nn.Linear(dim, mid_dim)
# self.fc2 = linear(128, 64)
n_out = self.n_view
self.fc2 = nn.Linear(mid_dim, n_out)
def forward(self, x):
x = x.view([x.shape[0], -1])
out = F.relu(self.fc1(x))
out = self.fc2(out)
return F.softmax(out, dim=1)