forked from ZhuiyiTechnology/simbert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimbert.py
255 lines (216 loc) · 8.5 KB
/
simbert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#! -*- coding: utf-8 -*-
# SimBERT训练代码
# 训练环境:tensorflow 1.14 + keras 2.3.1 + bert4keras 0.7.7
from __future__ import print_function
import json
import numpy as np
from collections import Counter
from bert4keras.backend import keras, K
from bert4keras.layers import Loss
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.optimizers import Adam, extend_with_weight_decay
from bert4keras.snippets import DataGenerator
from bert4keras.snippets import sequence_padding
from bert4keras.snippets import text_segmentate
from bert4keras.snippets import AutoRegressiveDecoder
from bert4keras.snippets import uniout
# 基本信息
maxlen = 32
batch_size = 128
steps_per_epoch = 1000
epochs = 10000
corpus_path = 'data_sample.json'
# bert配置
config_path = '/root/kg/bert/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/root/kg/bert/chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/root/kg/bert/chinese_L-12_H-768_A-12/vocab.txt'
# 加载并精简词表,建立分词器
token_dict, keep_tokens = load_vocab(
dict_path=dict_path,
simplified=True,
startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'],
)
tokenizer = Tokenizer(token_dict, do_lower_case=True)
def read_corpus():
"""读取语料,每行一个json
"""
while True:
with open(corpus_path) as f:
for l in f:
yield json.loads(l)
def truncate(text):
"""截断句子
"""
seps, strips = u'\n。!?!?;;,, ', u';;,, '
return text_segmentate(text, maxlen - 2, seps, strips)[0]
class data_generator(DataGenerator):
"""数据生成器
"""
def __init__(self, *args, **kwargs):
super(data_generator, self).__init__(*args, **kwargs)
self.some_samples = []
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids = [], []
for is_end, d in self.sample(random):
text, synonyms = d['text'], d['synonyms']
synonyms = [text] + synonyms
np.random.shuffle(synonyms)
text, synonym = synonyms[:2]
text, synonym = truncate(text), truncate(synonym)
self.some_samples.append(text)
if len(self.some_samples) > 1000:
self.some_samples.pop(0)
token_ids, segment_ids = tokenizer.encode(
text, synonym, max_length=maxlen * 2
)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
token_ids, segment_ids = tokenizer.encode(
synonym, text, max_length=maxlen * 2
)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(batch_token_ids)
batch_segment_ids = sequence_padding(batch_segment_ids)
yield [batch_token_ids, batch_segment_ids], None
batch_token_ids, batch_segment_ids = [], []
class TotalLoss(Loss):
"""loss分两部分,一是seq2seq的交叉熵,二是相似度的交叉熵。
"""
def compute_loss(self, inputs, mask=None):
loss1 = self.compute_loss_of_seq2seq(inputs, mask)
loss2 = self.compute_loss_of_similarity(inputs, mask)
self.add_metric(loss1, name='seq2seq_loss')
self.add_metric(loss2, name='similarity_loss')
return loss1 + loss2
def compute_loss_of_seq2seq(self, inputs, mask=None):
y_true, y_mask, _, y_pred = inputs
y_true = y_true[:, 1:] # 目标token_ids
y_mask = y_mask[:, 1:] # segment_ids,刚好指示了要预测的部分
y_pred = y_pred[:, :-1] # 预测序列,错开一位
loss = K.sparse_categorical_crossentropy(y_true, y_pred)
loss = K.sum(loss * y_mask) / K.sum(y_mask)
return loss
def compute_loss_of_similarity(self, inputs, mask=None):
_, _, y_pred, _ = inputs
y_true = self.get_labels_of_similarity(y_pred) # 构建标签
y_pred = K.l2_normalize(y_pred, axis=1) # 句向量归一化
similarities = K.dot(y_pred, K.transpose(y_pred)) # 相似度矩阵
similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12 # 排除对角线
similarities = similarities * 30 # scale
loss = K.categorical_crossentropy(
y_true, similarities, from_logits=True
)
return loss
def get_labels_of_similarity(self, y_pred):
idxs = K.arange(0, K.shape(y_pred)[0])
idxs_1 = idxs[None, :]
idxs_2 = (idxs + 1 - idxs % 2 * 2)[:, None]
labels = K.equal(idxs_1, idxs_2)
labels = K.cast(labels, K.floatx())
return labels
# 建立加载模型
bert = build_transformer_model(
config_path,
checkpoint_path,
with_pool='linear',
application='unilm',
keep_tokens=keep_tokens, # 只保留keep_tokens中的字,精简原字表
return_keras_model=False,
)
encoder = keras.models.Model(bert.model.inputs, bert.model.outputs[0])
seq2seq = keras.models.Model(bert.model.inputs, bert.model.outputs[1])
outputs = TotalLoss([2, 3])(bert.model.inputs + bert.model.outputs)
model = keras.models.Model(bert.model.inputs, outputs)
AdamW = extend_with_weight_decay(Adam, 'AdamW')
optimizer = AdamW(learning_rate=2e-6, weight_decay_rate=0.01)
model.compile(optimizer=optimizer)
model.summary()
class SynonymsGenerator(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.set_rtype('probas')
def predict(self, inputs, output_ids, step):
token_ids, segment_ids = inputs
token_ids = np.concatenate([token_ids, output_ids], 1)
segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
return seq2seq.predict([token_ids, segment_ids])[:, -1]
def generate(self, text, n=1, topk=5):
token_ids, segment_ids = tokenizer.encode(text, max_length=maxlen)
output_ids = self.random_sample([token_ids, segment_ids], n,
topk) # 基于随机采样
return [tokenizer.decode(ids) for ids in output_ids]
synonyms_generator = SynonymsGenerator(
start_id=None, end_id=tokenizer._token_end_id, maxlen=maxlen
)
def gen_synonyms(text, n=100, k=20):
""""含义: 产生sent的n个相似句,然后返回最相似的k个。
做法:用seq2seq生成,并用encoder算相似度并排序。
效果:
>>> gen_synonyms(u'微信和支付宝哪个好?')
[
u'微信和支付宝,哪个好?',
u'微信和支付宝哪个好',
u'支付宝和微信哪个好',
u'支付宝和微信哪个好啊',
u'微信和支付宝那个好用?',
u'微信和支付宝哪个好用',
u'支付宝和微信那个更好',
u'支付宝和微信哪个好用',
u'微信和支付宝用起来哪个好?',
u'微信和支付宝选哪个好',
]
"""
r = synonyms_generator.generate(text, n)
r = [i for i in set(r) if i != text]
r = [text] + r
X, S = [], []
for t in r:
x, s = tokenizer.encode(t)
X.append(x)
S.append(s)
X = sequence_padding(X)
S = sequence_padding(S)
Z = encoder.predict([X, S])
Z /= (Z**2).sum(axis=1, keepdims=True)**0.5
argsort = np.dot(Z[1:], -Z[0]).argsort()
return [r[i + 1] for i in argsort[:k]]
def just_show():
"""随机观察一些样本的效果
"""
some_samples = train_generator.some_samples
S = [np.random.choice(some_samples) for i in range(3)]
for s in S:
try:
print(u'原句子:%s' % s)
print(u'同义句子:')
print(gen_synonyms(s, 10, 10))
print()
except:
pass
class Evaluate(keras.callbacks.Callback):
"""评估模型
"""
def __init__(self):
self.lowest = 1e10
def on_epoch_end(self, epoch, logs=None):
model.save_weights('./latest_model.weights')
# 保存最优
if logs['loss'] <= self.lowest:
self.lowest = logs['loss']
model.save_weights('./best_model.weights')
# 演示效果
just_show()
if __name__ == '__main__':
train_generator = data_generator(read_corpus(), batch_size)
evaluator = Evaluate()
model.fit_generator(
train_generator.forfit(),
steps_per_epoch=steps_per_epoch,
epochs=epochs,
callbacks=[evaluator]
)
else:
model.load_weights('./latest_model.weights')