-
Notifications
You must be signed in to change notification settings - Fork 0
/
scATAC_01_Filter_Cells.R
238 lines (201 loc) · 8.98 KB
/
scATAC_01_Filter_Cells.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#Filtering Cells based on TSS enrichment and unique fragments
#07/31/19
#Adapted from Satpathy*, Granja*, et al.
#Massively parallel single-cell chromatin landscapes of human immune
#cell development and intratumoral T cell exhaustion (2019)
#Created by Jeffrey Granja
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(magrittr)
library(ggplot2)
library(Rcpp)
library(viridis)
####################################################
#Functions
####################################################
sourceCpp(code='
#include <Rcpp.h>
using namespace Rcpp;
using namespace std;
// [[Rcpp::export]]
IntegerMatrix tabulate2dCpp(IntegerVector x1, int xmin, int xmax, IntegerVector y1, int ymin, int ymax){
if(x1.size() != y1.size()){
stop("width must equal size!");
}
IntegerVector x = clone(x1);
IntegerVector y = clone(y1);
int n = x.size();
IntegerVector rx = seq(xmin,xmax);
IntegerVector ry = seq(ymin,ymax);
IntegerMatrix mat( ry.size() , rx.size() );
int xi,yi;
for(int i = 0; i < n; i++){
xi = (x[i] - xmin);
yi = (y[i] - ymin);
if(yi >= 0 && yi < ry.size()){
if(xi >= 0 && xi < rx.size()){
mat( yi , xi ) = mat( yi , xi ) + 1;
}
}
}
return mat;
}'
)
insertionProfileSingles <- function(feature, fragments, by = "RG", getInsertions = TRUE, fix = "center", flank = 2000, norm = 100, smooth = 51, range = 100, batchSize = 100){
insertionProfileSingles_helper <- function(feature, fragments, by = "RG", getInsertions = TRUE, fix = "center", flank = 2000, norm = 100, smooth = 51, range = 100, batchSize = 100){
#Convert To Insertion Sites
if(getInsertions){
insertions <- c(
GRanges(seqnames = seqnames(fragments), ranges = IRanges(start(fragments), start(fragments)), RG = mcols(fragments)[,by]),
GRanges(seqnames = seqnames(fragments), ranges = IRanges(end(fragments), end(fragments)), RG = mcols(fragments)[,by])
)
by <- "RG"
}else{
insertions <- fragments
}
remove(fragments)
gc()
#center the feature
center <- unique(resize(feature, width = 1, fix = fix, ignore.strand = FALSE))
#get overlaps between the feature and insertions only up to flank bp
overlap <- DataFrame(findOverlaps(query = center, subject = insertions, maxgap = flank, ignore.strand = TRUE))
overlap$strand <- strand(center)[overlap[,1]]
overlap$name <- mcols(insertions)[overlap[,2],by]
overlap <- transform(overlap, id=match(name, unique(name)))
ids <- length(unique(overlap$name))
#distance
overlap$dist <- NA
minus <- which(overlap$strand == "-")
other <- which(overlap$strand != "-")
overlap$dist[minus] <- start(center[overlap[minus,1]]) - start(insertions[overlap[minus,2]])
overlap$dist[other] <- start(insertions[overlap[other,2]]) - start(center[overlap[other,1]])
#Insertion Mat
profile_mat <- tabulate2dCpp(x1 = overlap$id, y1 = overlap$dist, xmin = 1, xmax = ids, ymin = -flank, ymax = flank)
colnames(profile_mat) <- unique(overlap$name)
profile <- rowSums(profile_mat)
#normalize
profile_mat_norm <- apply(profile_mat, 2, function(x) x/max(mean(x[c(1:norm,(flank*2-norm+1):(flank*2+1))]), 0.5)) #Handles low depth cells
profile_norm <- profile/mean(profile[c(1:norm,(flank*2-norm+1):(flank*2+1))])
#smooth
profile_mat_norm_smooth <- apply(profile_mat_norm, 2, function(x) zoo::rollmean(x, smooth, fill = 1))
profile_norm_smooth <- zoo::rollmean(profile_norm, smooth, fill = 1)
#enrichment
max_finite <- function(x){
suppressWarnings(max(x[is.finite(x)], na.rm=TRUE))
}
e_mat <- apply(profile_mat_norm_smooth, 2, function(x) max_finite(x[(flank-range):(flank+range)]))
names(e_mat) <- colnames(profile_mat_norm_smooth)
e <- max_finite(profile_norm_smooth[(flank-range):(flank+range)])
#Summary
df_mat <- data.frame(
enrichment = e_mat,
insertions = as.vector(table(mcols(insertions)[,by])[names(e_mat)]),
insertionsWindow = as.vector(table(overlap$name)[names(e_mat)])
)
df_sum <- data.frame(bp = (-flank):flank, profile = profile, norm_profile = profile_norm, smooth_norm_profile = profile_norm_smooth, enrichment = e)
rownames(df_sum) <- NULL
return(list(df = df_sum, dfall = df_mat, profileMat = profile_mat_norm, profileMatSmooth = profile_mat_norm_smooth))
}
uniqueTags <- as.character(unique(mcols(fragments)[,by]))
splitTags <- split(uniqueTags, ceiling(seq_along(uniqueTags)/batchSize))
pb <- txtProgressBar(min = 0, max = 100, initial = 0, style = 3)
batchTSS <- lapply(seq_along(splitTags), function(x){
setTxtProgressBar(pb, round(x * 100/length(splitTags), 0))
profilex <- insertionProfileSingles_helper(
feature=feature,
fragments=fragments[which(mcols(fragments)[,by] %in% splitTags[[x]])],
by = by,
getInsertions = getInsertions,
fix = fix,
flank = flank,
norm = norm,
smooth = smooth,
range = range
)
return(profilex)
})
df <- lapply(batchTSS, function(x) x$df) %>% Reduce("rbind",.)
dfall <- lapply(batchTSS, function(x) x$dfall) %>% Reduce("rbind",.)
profileMat <- lapply(batchTSS, function(x) x$profileMat) %>% Reduce("cbind",.)
profileMatSmooth <- lapply(batchTSS, function(x) x$profileMatSmooth) %>% Reduce("cbind",.)
return(list(df = df, dfall = dfall, profileMat = profileMat, profileMatSmooth = profileMatSmooth))
}
# using this sample for healthy:
# https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4138893
# this for disease
# https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4138898
####################################################
# Input
####################################################
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
minFrags <- 100
filterFrags <- 1000
filterTSS <- 8
# file_fragments <- "data/PBMC_10x-Sub25M-fragments.tsv.gz"
file_fragments <- "/projectnb/paxlab/isarfraz/Data/GSM4138893_scATAC_PBMC_D10T1.fragments.tsv.gz"
# file_fragments <- "/projectnb/paxlab/isarfraz/Data/GSM4138898_scATAC_MPAL1_T1.fragments.tsv.gz"
# out_fragments <- "data/PBMC_10x-Sub25M-fragments.gr.rds"
out_fragments <- "/projectnb/paxlab/isarfraz/Data/GSM4138893_scATAC_PBMC_D10T1.fragments.rds"
# out_fragments <- "/projectnb/paxlab/isarfraz/Data/GSM4138898_scATAC_MPAL1_T1.fragments.rds"
name <- "PBMC"
####################################################
# Reading Fragment Files
####################################################
message("Reading in fragment files...")
# fragments of sequences?
fragments <- data.frame(readr::read_tsv(file_fragments, col_names=FALSE))
fragments <- GRanges(
seqnames = fragments[,1],
IRanges(fragments[,2]+1, fragments[,3]),
RG = fragments[,4],
N = fragments[,5]
)
print(head(fragments))
# seqnames = chromosome number
# ranges = range on the strand (chr start and end)
# strand = which strand
# ---------
# RG = cell/barcodes
# N = ??
# each barcode/cell must have atleast minFrags fragments, otherwise remove
message("Filtering Lowly Represented Cells...")
tabRG <- table(fragments$RG)
keep <- names(tabRG)[which(tabRG >= minFrags)]
fragments <- fragments[fragments$RG %in% keep,]
fragments <- sort(sortSeqlevels(fragments))
####################################################
# TSS Profile
####################################################
# getting chr/ranges info from hg19 genome (known genes) about 51k genes
feature <- txdb %>% transcripts(.) %>% resize(., width = 1, fix = "start") %>% unique
# computes some stats, TSS enrichment scores etc, for each cell
tssProfile <- insertionProfileSingles(feature = feature, fragments = fragments,
getInsertions = TRUE, batchSize = 1000)
tssSingles <- tssProfile$dfall
tssSingles$uniqueFrags <- 0
tssSingles[names(tabRG),"uniqueFrags"] <- tabRG
tssSingles$cellCall <- 0
tssSingles$cellCall[tssSingles$uniqueFrags >= filterFrags & tssSingles$enrichment >= filterTSS] <- 1
####################################################
# Plot Stats
####################################################
tssSingles <- tssSingles[complete.cases(tssSingles),]
nPass <- sum(tssSingles$cellCall==1)
nTotal <- sum(tssSingles$uniqueFrags >= filterFrags)
# a plot to figure out which cells pass TSS threshold, x is uniqueFrags per cell and y ix score
# pdf("results/Filter-Cells.pdf")
ggplot(tssSingles[tssSingles$uniqueFrags > 500,], aes(x = log10(uniqueFrags), y = enrichment)) +
geom_hex(bins = 100) +
theme_bw() + scale_fill_viridis() +
xlab("log10 Unique Fragments") +
ylab("TSS Enrichment") +
geom_hline(yintercept = filterTSS, lty = "dashed") +
geom_vline(xintercept = log10(filterFrags), lty = "dashed") +
ggtitle(sprintf("Pass Rate : %s of %s (%s)", nPass, nTotal, round(100*nPass/nTotal,2)))
# dev.off()
# write.table(tssSingles, "results/Filter-Cells.txt")
# now actual filtering (all chr from filtered cells in fragments now)
#Filter
fragments <- fragments[mcols(fragments)[,"RG"] %in% rownames(tssSingles)[tssSingles$cellCall==1]]
fragments$RG <- paste0(name,"#",fragments$RG)
#Save
saveRDS(fragments, out_fragments)