-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpano.jl
504 lines (434 loc) · 18.3 KB
/
pano.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
using Printf, LinearAlgebra
import FixedPointNumbers: N0f8
import Images
import CSV, DataFrames
import Cairo
toRadians(α::Float64) = α / 180.0 * π
toDegrees(α::Float64) = α * 180.0 / π
#===========================================
____ _ _ _ _ _
/ ___| ___ ___ | | | | |_(_) |___
| | _ / _ \/ _ \| | | | __| | / __|
| |_| | __/ (_) | |_| | |_| | \__ \
\____|\___|\___/ \___/ \__|_|_|___/
=============================================#
struct PositionLLH
lat::Float64
lon::Float64
height::Float64
end
struct PositionXYZ
x::Float64
y::Float64
z::Float64
end
abstract type Ellipsoid
end
struct Wgs84 <: Ellipsoid
a::Float64
b::Float64
f::Float64
e::Float64
e²::Float64
function Wgs84()
a = 6378137.0
f = 1.0/298.257223563
b = a*(1.0-f)
e² = 1.0 - b*b/(a*a) # or f * (2.0-f)
e = sqrt(e²)
new(a,b,f,e,e²)
end
end
struct SphericalEarth <: Ellipsoid
r::Float64
SphericalEarth() = new(6378137.0)
end
function llh_to_xyz(ellipsoid::Wgs84, llh::PositionLLH)::PositionXYZ
Φ = toRadians(llh.lat)
λ = toRadians(llh.lon)
h = llh.height
e² = ellipsoid.e²
sinΦ = sin(Φ)
cosΦ = cos(Φ)
sinλ = sin(λ)
cosλ = cos(λ)
v = ellipsoid.a / sqrt(1.0 - e² * sinΦ * sinΦ)
x = (v+h) * cosΦ * cosλ
y = (v+h) * cosΦ * sinλ
z = ((1.0 - e²) * v + h) * sinΦ;
return PositionXYZ(x,y,z)
end
# TODO: make it work for south and west
function xyz_to_llh(ellipsoid::Wgs84, xyz::PositionXYZ)::PositionLLH
e² = ellipsoid.e²
p = sqrt(xyz.x*xyz.x + xyz.y*xyz.y)
lon = atan(xyz.y / xyz.x)
lat_init = atan(xyz.z/(p*(1.0 - e²)))
v = ellipsoid.a / sqrt(1.0-e²*sin(lat_init)*sin(lat_init))
lat = atan((xyz.z + e²*v*sin(lat_init))/p)
height = (p/cos(lat))-v
return PositionLLH(toDegrees(lat), toDegrees(lon), height)
end
function llh_to_xyz(ellipsioid::SphericalEarth, llh::PositionLLH)::PositionXYZ
Φ = toRadians(llh.lat)
λ = toRadians(llh.lon)
h = llh.height
cosΦ = cos(Φ)
v = ellipsioid.r + h
x = v * cosΦ * cos(λ)
y = v * cosΦ * sin(λ)
z = v * sin(Φ)
return PositionXYZ(x,y,z)
end
function xyz_to_llh(ellipsoid::SphericalEarth, xyz::PositionXYZ)::PositionLLH
v = sqrt(xyz.x*xyz.x + xyz.y*xyz.y + xyz.z*xyz.z)
height = v - ellipsoid.r
lon = atan(xyz.y, xyz.x)
lat = asin(xyz.z/v)
return PositionLLH(toDegrees(lat), toDegrees(lon), height)
end
# https://www.movable-type.co.uk/scripts/latlong.html
# for SphericalEarth, but best source found
function bearing(p1::PositionLLH, p2::PositionLLH)::Float64
φ1 = toRadians(p1.lat)
φ2 = toRadians(p2.lat)
Δλ = toRadians(p2.lon-p1.lon)
y = sin(Δλ)*cos(φ2)
x = cos(φ1)*sin(φ2) - sin(φ1)*cos(φ2)*cos(Δλ)
θ = atan(y, x)
return mod(toDegrees(θ) + 360.0, 360.0)
end
xyz_to_vector(xyz::PositionXYZ)::Vector{Float64} = [xyz.x; xyz.y; xyz.z]
# GeoUtils test
#testXYZ = llh_to_xyz(wgs84, PositionLLH(49.0, 16.0, 225.0))
#println(testXYZ)
#testLLH= xyz_to_llh(wgs84, testXYZ)
#println(testLLH)
#================================================================
_ _ _ _ _ __ __
| | | | ___(_) __ _| |__ | |_| \/ | __ _ _ __
| |_| |/ _ \ |/ _` | '_ \| __| |\/| |/ _` | '_ \
| _ | __/ | (_| | | | | |_| | | | (_| | |_) |
|_| |_|\___|_|\__, |_| |_|\__|_| |_|\__,_| .__/
|___/ |_|
===============================================================#
struct LatLonRange
minLat::Int16
minLon::Int16
maxLat::Int16
maxLon::Int16
end
function loadData(range::LatLonRange, tileDir)
getHgtFileName(lat, lon) = @sprintf "N%02dE%03d.hgt" lat lon
getHgtFilePath(lat, lon, tileDir) = @sprintf "%s/%s" tileDir getHgtFileName(lat, lon)
nTilesHoriz = range.maxLon - range.minLon + 1
nTilesVert = range.maxLat - range.minLat + 1
nTilesTotal = nTilesHoriz * nTilesVert
dataWidth = nTilesHoriz*1200+1
dataHeight = nTilesVert*1200+1
@printf("Requesting data for area %d°N %d°E - %d°N %d°E ... (aprox. %3.0fx%3.0f km).\n",
range.minLat, range.minLon,
range.maxLat, range.maxLon,
(nTilesHoriz)*111.1*cos(range.minLat/180.0*π),
(nTilesVert)*111.1
)
@printf("I will read %dx%d=%d tiles, heightmap size is %dx%d (%d MB).\n",
nTilesHoriz, nTilesVert, nTilesTotal,
dataWidth, dataHeight, dataWidth*dataHeight*2/1000000
)
# Note: array is indexed by row, column and starting index is 1
data = Array{UInt16}(undef, dataHeight, dataWidth)
progress = 0
progressLock = Threads.SpinLock()
Threads.@threads for i in 0:(nTilesTotal-1)
lat = range.minLat + div(i, nTilesHoriz)
lon = range.minLon + mod(i, nTilesHoriz)
# Print progress
lock(progressLock) do
progress = progress + 1
@printf("Loading tile %03d/%03d lat=%02d, lon=%02d\n", progress, nTilesTotal, lat, lon)
end
# Load tile
tile = Array{Int16}(undef, 1201, 1201)
path = getHgtFilePath(lat, lon, tileDir)
io = open(path, "r")
read!(io, tile)
close(io)
# Fix endianity, clamp, transpose and copy to data
tile .= ntoh.(tile)
clamp!(tile, 0, 6000)
tile = transpose(tile)
rOffset = (range.maxLat-lat) * 1200
cOffset = (lon-range.minLon) * 1200
for r in 1:1201
@simd for c in 1:1201
data[rOffset+r, cOffset+c] = tile[r, c]
end
end
end
return data
end
function saveHeightMap(data)
maxValue = maximum(data)
norm = Images.Gray.(data/maxValue)
println("Saving heightmap-gray.png")
save("heightmap-gray.png", norm)
end
# getHeight(srtmRange, heightMap, 49.142158, 16.627978) -> 192 Svratka, Svitava
function getHeight(range::LatLonRange, data::Matrix{UInt16}, lat::Float64, lon::Float64)
r = Int64(trunc((range.maxLat+1 - lat)*1200))
c = Int64(trunc((lon-range.minLon)*1200))
r = clamp(r, 1, size(data)[1])
c = clamp(c, 1, size(data)[2])
return data[r,c]
end
makeEarthCurve(radius, distMax, distStep) = [sqrt(radius*radius-x*x)-radius for x=range(0, distMax, step=distStep)]
struct ViewPort
ellipsoid::Ellipsoid
eye::PositionLLH
angleMin::Float64
angleMax::Float64
vertAngleMin::Float64
vertAngleMax::Float64
angleStep::Float64
distMax::Float64
distStep::Float64
refractionCoef::Float64
vUp::Vector{Float64}
vNorth::Vector{Float64}
vEast::Vector{Float64}
outWidth::Int
outHeight::Int
function ViewPort(ellipsoid::Ellipsoid, eye::PositionLLH, azimuthMinR, azimuthMaxR, elevationMinR, elevationMaxR, angularStepR, distMaxM, refractionCoef)
distStep = 50.0
pRef = xyz_to_vector(llh_to_xyz(ellipsoid, eye))
vZ = [0.0; 0.0; 1.0]
vUp = normalize(pRef)
vEast = normalize(cross(-vUp,vZ))
vNorth = normalize(cross(vEast,-vUp))
azimuthDiff = abs(azimuthMinR-azimuthMaxR)
if (azimuthDiff > 2.0*π)
throw(DomainError(azimuthDiff, "Azimuth difference should not exceed 2π"))
end
if (azimuthMinR > azimuthMaxR)
azimuthMinR = azimuthMinR - 2.0*π
end
if (azimuthMinR < 0.0 && azimuthMaxR < 0.0)
azimuthMinR = azimuthMinR + 2.0*π
azimuthMaxR = azimuthMaxR + 2.0*π
end
xMax = Int64(trunc( (azimuthMaxR-azimuthMinR)/angularStepR ))+1
outWidth = xMax+1
outHeight = size(range(elevationMinR, elevationMaxR, step=angularStepR))[1]+1
new(ellipsoid, eye,
azimuthMinR, azimuthMaxR, elevationMinR, elevationMaxR, angularStepR,
distMaxM, distStep,
refractionCoef,
vUp, vNorth, vEast,
outWidth, outHeight)
end
end
function eyeVec(vp::ViewPort)::Vector{Float64}
eyeXYZ = llh_to_xyz(vp.ellipsoid, vp.eye)
return [eyeXYZ.x; eyeXYZ.y; eyeXYZ.z]
end
function makeDistMap(vp::ViewPort, latLonRange::LatLonRange, heightMap::Matrix{UInt16})::Matrix{UInt16}
pRef = eyeVec(vp)
earthRadius = sqrt(dot(pRef, pRef)) * vp.refractionCoef
earthCurve = makeEarthCurve(earthRadius, vp.distMax, vp.distStep)
@printf("Earth radius is %6.1f km (refraction x%4.2f)\n", earthRadius/vp.refractionCoef/1000.0, vp.refractionCoef)
@printf("Output size is %d x %d pixels\n", vp.outWidth, vp.outHeight)
@printf("Output resolution is %f mrad per pixel or %f pixels per degree\n", vp.angleStep * 1000.0, 1.0/toDegrees(vp.angleStep))
output = zeros(UInt16, vp.outHeight, vp.outWidth)
distances = range(0.0, vp.distMax, step=vp.distStep)
Threads.@threads for x in 0:(vp.outWidth-1)
azimuth = vp.angleMin + x*vp.angleStep
cosAz = cos(azimuth)
sinAz = sin(azimuth)
vertAngle = vp.vertAngleMin
h0 = vp.eye.height
rayCastHeight = h0
index = 1
direction = vp.vNorth*cosAz + vp.vEast*sinAz
point = [0.0,0.0,0.0]
for dist in distances
#point = pRef + dist * direction;
#point = [pRef[1]+dist*direction[1], pRef[2]+dist*direction[2], pRef[3]+dist*direction[3]]
point[1] = pRef[1]+dist*direction[1]
point[2] = pRef[2]+dist*direction[2]
point[3] = pRef[3]+dist*direction[3]
llh = xyz_to_llh(vp.ellipsoid, PositionXYZ(point[1], point[2], point[3]))
rayCastHeight = h0 + sin(vertAngle) * dist
terrainHeight = earthCurve[index] + getHeight(latLonRange, heightMap, llh.lat, llh.lon)
if terrainHeight > rayCastHeight
newVertAngle = atan((terrainHeight-h0)/dist)
yTop = Int64(trunc( (vp.vertAngleMax-newVertAngle)/vp.angleStep ))
yBot = Int64(trunc( (vp.vertAngleMax- vertAngle)/vp.angleStep ))
v = UInt16(trunc( dist / vp.distStep ))
for y in yTop:yBot
output[y, x+1] = v
end
vertAngle = newVertAngle
end
index = index + 1
end
end
return output
end
function extractOutlines(distMap::Matrix{UInt16})
nRows = size(distMap)[1]
nCols = size(distMap)[2]
#ouput = Array{Int16}(undef, nRows, nCols)
output = zeros(N0f8, nRows, nCols)
Threads.@threads for row in 2:nRows
for col in 1:nCols
diff::UInt8 = 255-clamp(abs(reinterpret(Int16,distMap[row-1,col]) - reinterpret(Int16,distMap[row,col])), 0, 255)
output[row, col] = reinterpret(N0f8, diff)
end
end
return output
end
function testPixel(distMap::Matrix{UInt16}, x::UInt64, y::UInt64, radius::Int64, value::UInt16, valueTolerance::UInt16)::Bool
if (x < radius+1) || (y < radius+1) || (x+radius> size(distMap)[2]) || (y+radius> size(distMap)[1])
return false
end
for row in (y-radius):(y+radius)
for col in (x-radius):(x+radius)
mapValue = distMap[row, col]
if (mapValue > value) && ((mapValue - value) ≤ valueTolerance)
return true
end
if (mapValue < value) && ((value - mapValue) ≤ valueTolerance)
return true
end
end
end
return false
end
function drawSummits(vp::ViewPort, distMap::Matrix{UInt16})
println("Loading data")
dfFiltered = DataFrames.DataFrame(Summit = String[], Elevation = Float64[], Distance=Float64[], X=UInt64[], Y=UInt64[])
# TODO: options
#hillsCZ = CSV.File("data-cz-prom100.tsv") |> DataFrames.DataFrame
#hillsSK = CSV.File("data-sk-prom200.tsv") |> DataFrames.DataFrame
#hills = vcat(hillsCZ, hillsSK)
hills = CSV.File("osm-cz-sk.tsv") |> DataFrames.DataFrame
# convert to ours azimuth, angle above horizon and distance - project into
hill_to_xyz(ellipsoid::Ellipsoid, dfRow)::PositionXYZ = llh_to_xyz(ellipsoid, PositionLLH(dfRow["Latitude"], dfRow["Longitude"], dfRow["Elevation"]))
# difference between true and seen earth curvature
elevationDropAtDistance(distance::Float64, radius::Float64)::Float64 = sqrt(radius*radius-distance*distance)-radius
elevationDropCompensation(distance::Float64, radius::Float64, refractionCoef::Float64)::Float64 = elevationDropAtDistance(distance, radius*refractionCoef) - elevationDropAtDistance(distance, radius)
# TODO: make distance function
mLocalToWorld = hcat(vp.vEast,vp.vNorth,vp.vUp)
mWorldToLocal = inv(mLocalToWorld)
#ground = PositionLLH(vp.eye.lat, vp.eye.lon, 0.0)
pRef = xyz_to_vector(llh_to_xyz(vp.ellipsoid, vp.eye))
earthRadius = sqrt(dot(pRef, pRef))
for hill in eachrow(hills)
hill_world = hill_to_xyz(vp.ellipsoid, hill)
hill_local_xyz = mWorldToLocal * [hill_world.x; hill_world.y; hill_world.z]
# hill_local_xyz[3] = hill_local_xyz[3] - earthRadius <---- this gives weird altitutude, let's restore it in the same way as raytracer
hill_local_xyz[3] = 0.0
distance = sqrt(dot(hill_local_xyz, hill_local_xyz))
if distance > vp.distMax
continue
end
hill_local_xyz[3] = hill["Elevation"] + elevationDropAtDistance(distance, earthRadius * vp.refractionCoef) - vp.eye.height
azimuth = bearing(vp.eye, PositionLLH(hill["Latitude"], hill["Longitude"], 0.0))
if (azimuth < toDegrees(vp.angleMin) || azimuth > toDegrees(vp.angleMax)) # FIXME: test for weird angles
continue
end
@printf("%20s is possibly visible at azimuth %6.2f, distance %6.2f km", hill["Summit"], azimuth, distance/1000.0)
elevationAngle=atan(hill_local_xyz[3], distance)
# @printf(" hill=%f+%f, dist=%f\n", hill_local_xyz[3], elevationDropCompensation(distance, earthRadius, vp.refractionCoef), distance)
# @printf(" , pixel.x,y=%5.0f,%5.0f\n", (toRadians(azimuth)-vp.angleMin)/vp.angleStep , (vp.vertAngleMax-elevationAngle)/vp.angleStep )
testX::UInt64 = round((toRadians(azimuth)-vp.angleMin)/vp.angleStep)
testY::UInt64 = round((vp.vertAngleMax-elevationAngle)/vp.angleStep)
visible::Bool = testPixel(distMap, testX, testY, 4, UInt16(trunc(distance/vp.distStep)), UInt16(5))
@printf(", visible=%s\n", visible)
if visible
push!(dfFiltered, (hill["Summit"], hill["Elevation"], distance, testX, testY))
end
end
println("Drawing ...")
# Initialize
Cairo_set_line_color(ctx::Cairo.CairoContext) = Cairo.set_source_rgb(ctx, 131/255, 148/255, 150/255)
Cairo_set_text_color(ctx::Cairo.CairoContext) = Cairo.set_source_rgb(ctx, 38/255, 139/255, 210/255)
function Cairo_line(ctx::Cairo.CairoContext, x1::Core.Real, y1::Core.Real, x2::Core.Real, y2::Core.Real)
Cairo.move_to(ctx, x1, y1)
Cairo.line_to(ctx, x2, y2)
Cairo.stroke(ctx)
end
surf = Cairo.CairoARGBSurface(vp.outWidth, vp.outHeight)
ctx = Cairo.CairoContext(surf)
# Background (previous image)
bgSurf = Cairo.read_from_png("outlines.png")
Cairo.set_source_surface(ctx, bgSurf, 0.0, 0.0)
Cairo.paint(ctx)
# Annotations
Cairo.select_font_face(ctx, "Fira Sans", Cairo.FONT_SLANT_NORMAL, Cairo.FONT_WEIGHT_NORMAL)
Cairo.set_font_size(ctx, 18.0)
Cairo.set_line_width(ctx, 1.0)
for poi in eachrow(dfFiltered)
Cairo_set_line_color(ctx)
Cairo_line(ctx, poi["X"]+0.5, poi["Y"], poi["X"]+0.5, 300.0)
Cairo_set_text_color(ctx)
Cairo.move_to(ctx, poi["X"]+5, 300.0-5.0)
Cairo.save(ctx)
Cairo.rotate(ctx, toRadians(-45.0))
Cairo.show_text(ctx, poi["Summit"])
Cairo.show_text(ctx, @sprintf(" (%3.0f km)", poi["Distance"]/1000.0))
Cairo.restore(ctx)
end
# Azimuth ticks
azMinD::Int = Int(ceil(toDegrees(vp.angleMin)))
azMaxD::Int = Int(floor(toDegrees(vp.angleMax)))
for az in azMinD:azMaxD
x = round((toRadians(Float64(az))-vp.angleMin)/vp.angleStep)+0.5
Cairo_set_line_color(ctx)
Cairo_line(ctx, x, 38, x, 42)
Cairo_line(ctx, x, 63, x, 68)
Cairo_set_text_color(ctx)
ext = Cairo.text_extents(ctx, @sprintf("%d", az))
Cairo.move_to(ctx, x - ext[3]/2, 58)
Cairo.show_text(ctx, @sprintf("%d °", az))
end
# Horizon line
horizY = round(vp.vertAngleMax/vp.angleStep)+0.5
Cairo.set_source_rgb(ctx, 238/255, 232/255, 213/255)
Cairo_line(ctx, 0.0, horizY, vp.outWidth, horizY)
# Finalize
Cairo.write_to_png(surf, "outline-with-annotations.png" )
end
# Info (from https://www.udeuschle.de/panoramas/makepanoramas_en.htm)
# Lat: 50.08309 Lon 17.23094 Alt(auto+10m): 1500+10
# View direction: 112.5, extension 45 left: 90, right: 135, resolution 20pix/deg
# Tilt, range, vert. exaggeration 1.2
# TODO: determine lat/long range automatically
function main()
tileDir = "d:/_disk_d_old/devel-python/panorama/data_srtm"
#tileDir = "data_srtm"
latLonRange = LatLonRange(47, 15, 50, 21)
eye = PositionLLH(50.08309, 17.23094, 1510)
heightMap = loadData(latLonRange, tileDir)
#saveHeightMap(data)
ellipsoid = SphericalEarth()
#ellipsoid = Wgs84()
vp = ViewPort(ellipsoid, eye, toRadians(90.0), toRadians(135.0), -0.0560, 0.0339, 0.0001, 250.0e3, 1.18)
distMap = makeDistMap(vp, latLonRange, heightMap)
minValue = minimum(distMap)
maxValue = maximum(distMap)
@printf("min=%d max=%d\n", minValue, maxValue)
println("Saving distmap-gray.png")
Images.save("distmap-gray.png", Images.Gray.(distMap/maxValue))
println("Extracting outlines ...")
outlines=extractOutlines(distMap)
println("Saving outlines.png")
Images.save("outlines.png", outlines)
println("Creating annotations")
drawSummits(vp, distMap)
println("All done")
# This can be fun: https://wiki.flightgear.org/Atmospheric_light_scattering
# http://www.science-and-fiction.org/rendering/als.html
end
main()