-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathspy_100.py
43 lines (34 loc) · 1.4 KB
/
spy_100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
'''
A benchmark comparison to buying and holding SPY at 100%.
NOTE: This algo can run in minute-mode simulation and is compatible with LIVE TRADING.
'''
import pandas as pd
from zipline.api import order_target_percent
def initialize(context):
set_long_only()
set_symbol_lookup_date('2008-01-01')
schedule_function(trade,
date_rule=date_rules.every_day(),
time_rule=time_rules.market_open())
context.secs = [symbol('SPY')]
context.pcts = [1.0]
context.ETFs = zip(context.secs, context.pcts) # list of tuples
def handle_data(context, data):
pass
def trade(context, data):
"""
Make sure the porfolio is fully invested every day.
"""
threshold = 0.05
need_full_rebalance = False
# rebalance if we have too much cash
if context.portfolio.cash / context.portfolio.portfolio_value > threshold:
need_full_rebalance = True
# What we should do is first sell the overs and then buy the unders.
if need_full_rebalance:
# Get the current exchange time, in the exchange timezone
exchange_time = pd.Timestamp(get_datetime()).tz_convert('US/Eastern')
# perform the full rebalance if we flagged the need to do so
for sid, target in context.ETFs:
order_target_percent(sid, target)
log.info("Rebalanced at %s" % str(exchange_time))