-
Notifications
You must be signed in to change notification settings - Fork 107
/
visvalingam.go
320 lines (258 loc) · 7.27 KB
/
visvalingam.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
package simplify
import (
"math"
"github.com/paulmach/orb"
)
var _ orb.Simplifier = &VisvalingamSimplifier{}
// A VisvalingamSimplifier is a reducer that
// performs the vivalingham algorithm.
type VisvalingamSimplifier struct {
Threshold float64
// If 0 defaults to 2 for line, 3 for non-closed rings and 4 for closed rings.
// The intent is to maintain valid geometry after simplification, however it
// is still possible for the simplification to create self-intersections.
ToKeep int
}
// Visvalingam creates a new VisvalingamSimplifier.
// If minPointsToKeep is 0 the algorithm will keep at least 2 points for lines,
// 3 for non-closed rings and 4 for closed rings. However it is still possible
// for the simplification to create self-intersections.
func Visvalingam(threshold float64, minPointsToKeep int) *VisvalingamSimplifier {
return &VisvalingamSimplifier{
Threshold: threshold,
ToKeep: minPointsToKeep,
}
}
// VisvalingamThreshold runs the Visvalingam-Whyatt algorithm removing
// triangles whose area is below the threshold.
// Will keep at least 2 points for lines, 3 for non-closed rings and 4 for closed rings.
// The intent is to maintain valid geometry after simplification, however it
// is still possible for the simplification to create self-intersections.
func VisvalingamThreshold(threshold float64) *VisvalingamSimplifier {
return Visvalingam(threshold, 0)
}
// VisvalingamKeep runs the Visvalingam-Whyatt algorithm removing
// triangles of minimum area until we're down to `minPointsToKeep` number of points.
// If minPointsToKeep is 0 the algorithm will keep at least 2 points for lines,
// 3 for non-closed rings and 4 for closed rings. However it is still possible
// for the simplification to create self-intersections.
func VisvalingamKeep(minPointsToKeep int) *VisvalingamSimplifier {
return Visvalingam(math.MaxFloat64, minPointsToKeep)
}
func (s *VisvalingamSimplifier) simplify(ls orb.LineString, area, wim bool) (orb.LineString, []int) {
if len(ls) <= 1 {
return ls, nil
}
toKeep := s.ToKeep
if toKeep == 0 {
if area {
if ls[0] == ls[len(ls)-1] {
toKeep = 4
} else {
toKeep = 3
}
} else {
toKeep = 2
}
}
var indexMap []int
if len(ls) <= toKeep {
if wim {
// create identify map
indexMap = make([]int, len(ls))
for i := range ls {
indexMap[i] = i
}
}
return ls, indexMap
}
// edge cases checked, get on with it
threshold := s.Threshold * 2 // triangle area is doubled to save the multiply :)
removed := 0
// build the initial minheap linked list.
heap := minHeap(make([]*visItem, 0, len(ls)))
linkedListStart := &visItem{
area: math.Inf(1),
pointIndex: 0,
}
heap.Push(linkedListStart)
// internal path items
items := make([]visItem, len(ls))
previous := linkedListStart
for i := 1; i < len(ls)-1; i++ {
item := &items[i]
item.area = doubleTriangleArea(ls, i-1, i, i+1)
item.pointIndex = i
item.previous = previous
heap.Push(item)
previous.next = item
previous = item
}
// final item
endItem := &items[len(ls)-1]
endItem.area = math.Inf(1)
endItem.pointIndex = len(ls) - 1
endItem.previous = previous
previous.next = endItem
heap.Push(endItem)
// run through the reduction process
for len(heap) > 0 {
current := heap.Pop()
if current.area > threshold || len(ls)-removed <= toKeep {
break
}
next := current.next
previous := current.previous
// remove current element from linked list
previous.next = current.next
next.previous = current.previous
removed++
// figure out the new areas
if previous.previous != nil {
area := doubleTriangleArea(ls,
previous.previous.pointIndex,
previous.pointIndex,
next.pointIndex,
)
area = math.Max(area, current.area)
heap.Update(previous, area)
}
if next.next != nil {
area := doubleTriangleArea(ls,
previous.pointIndex,
next.pointIndex,
next.next.pointIndex,
)
area = math.Max(area, current.area)
heap.Update(next, area)
}
}
item := linkedListStart
count := 0
for item != nil {
ls[count] = ls[item.pointIndex]
count++
if wim {
indexMap = append(indexMap, item.pointIndex)
}
item = item.next
}
return ls[:count], indexMap
}
// Stuff to create the priority queue, or min heap.
// Rewriting it here, vs using the std lib, resulted in a 50% performance bump!
type minHeap []*visItem
type visItem struct {
area float64 // triangle area
pointIndex int // index of point in original path
// to keep a virtual linked list to help rebuild the triangle areas as we remove points.
next *visItem
previous *visItem
index int // internal index in heap, for removal and update
}
func (h *minHeap) Push(item *visItem) {
item.index = len(*h)
*h = append(*h, item)
h.up(item.index)
}
func (h *minHeap) Pop() *visItem {
removed := (*h)[0]
lastItem := (*h)[len(*h)-1]
(*h) = (*h)[:len(*h)-1]
if len(*h) > 0 {
lastItem.index = 0
(*h)[0] = lastItem
h.down(0)
}
return removed
}
func (h minHeap) Update(item *visItem, area float64) {
if item.area > area {
// area got smaller
item.area = area
h.up(item.index)
} else {
// area got larger
item.area = area
h.down(item.index)
}
}
func (h minHeap) up(i int) {
object := h[i]
for i > 0 {
up := ((i + 1) >> 1) - 1
parent := h[up]
if parent.area <= object.area {
// parent is smaller so we're done fixing up the heap.
break
}
// swap nodes
parent.index = i
h[i] = parent
object.index = up
h[up] = object
i = up
}
}
func (h minHeap) down(i int) {
object := h[i]
for {
right := (i + 1) << 1
left := right - 1
down := i
child := h[down]
// swap with smallest child
if left < len(h) && h[left].area < child.area {
down = left
child = h[down]
}
if right < len(h) && h[right].area < child.area {
down = right
child = h[down]
}
// non smaller, so quit
if down == i {
break
}
// swap the nodes
child.index = i
h[child.index] = child
object.index = down
h[down] = object
i = down
}
}
func doubleTriangleArea(ls orb.LineString, i1, i2, i3 int) float64 {
a := ls[i1]
b := ls[i2]
c := ls[i3]
return math.Abs((b[0]-a[0])*(c[1]-a[1]) - (b[1]-a[1])*(c[0]-a[0]))
}
// Simplify will run the simplification for any geometry type.
func (s *VisvalingamSimplifier) Simplify(g orb.Geometry) orb.Geometry {
return simplify(s, g)
}
// LineString will simplify the linestring using this simplifier.
func (s *VisvalingamSimplifier) LineString(ls orb.LineString) orb.LineString {
return lineString(s, ls)
}
// MultiLineString will simplify the multi-linestring using this simplifier.
func (s *VisvalingamSimplifier) MultiLineString(mls orb.MultiLineString) orb.MultiLineString {
return multiLineString(s, mls)
}
// Ring will simplify the ring using this simplifier.
func (s *VisvalingamSimplifier) Ring(r orb.Ring) orb.Ring {
return ring(s, r)
}
// Polygon will simplify the polygon using this simplifier.
func (s *VisvalingamSimplifier) Polygon(p orb.Polygon) orb.Polygon {
return polygon(s, p)
}
// MultiPolygon will simplify the multi-polygon using this simplifier.
func (s *VisvalingamSimplifier) MultiPolygon(mp orb.MultiPolygon) orb.MultiPolygon {
return multiPolygon(s, mp)
}
// Collection will simplify the collection using this simplifier.
func (s *VisvalingamSimplifier) Collection(c orb.Collection) orb.Collection {
return collection(s, c)
}