-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
103 lines (77 loc) · 3.32 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
from datetime import datetime
def process_song_file(cur, filepath):
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = df[['song_id','title','artist_id','year','duration']]
for i, row in song_data.iterrows():
cur.execute(song_table_insert, list(row))
# insert artist record
artist_data = df[['artist_id','artist_name','artist_location','artist_latitude','artist_longitude']]
for i, row in artist_data.iterrows():
cur.execute(artist_table_insert, list(row))
def process_log_file(cur, filepath):
# open log file
df = pd.read_json(filepath,lines=True)
# filter by NextSong action
df = df[df['page']=='NextSong']
# convert timestamp column to datetime
df['ts'] = df['ts'].apply(lambda x: datetime.fromtimestamp(x/1000.0) ) #convert millisecond to seconds before transforming to datetinme
df['start_time'] = df['ts'].apply(lambda x: x.strftime('%Y-%M-%d %H:%M:%S') )
df['hour'] = df['ts'].apply(lambda x: x.hour )
df['day'] = df['ts'].apply(lambda x: x.day )
df['week'] = df['ts'].apply(lambda x: x.isocalendar()[1] )
df['month'] = df['ts'].apply(lambda x: x.month )
df['year'] = df['ts'].apply(lambda x: x.year )
df['weekday'] = df['ts'].apply(lambda x: x.weekday() )
# insert time data records
# time_data =
# column_labels =
time_df = df[['userId','start_time','hour','day','week','month','year','weekday']]
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[['userId','firstName','lastName','gender','level']]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (row.start_time,row.userId,row.level,songid,artistid,row.sessionId,row.location,row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()