-
Notifications
You must be signed in to change notification settings - Fork 4
/
image.py
2094 lines (1579 loc) · 74.4 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
#
# image.py - Provides the :class:`Image` class, for representing 3D/4D NIFTI
# images.
#
# Author: Paul McCarthy <[email protected]>
#
"""This module provides the :class:`Nifti` and :class:`Image` classes, for
representing NIFTI1 and NIFTI2 images. The ``nibabel`` package is used
for file I/O.
It is very easy to load a NIFTI image::
from fsl.data.image import Image
myimg = Image('MNI152_T1_2mm.nii.gz')
A handful of other functions are also provided for working with image files
and file names:
.. autosummary::
:nosignatures:
canonicalShape
looksLikeImage
addExt
splitExt
getExt
removeExt
defaultExt
"""
import os
import os.path as op
import itertools as it
import collections.abc as abc
import enum
import json
import string
import logging
import tempfile
from pathlib import Path
from typing import Union
import numpy as np
import nibabel as nib
import nibabel.fileslice as fileslice
import fsl.utils.meta as meta
import fsl.utils.deprecated as deprecated
import fsl.transform.affine as affine
import fsl.utils.notifier as notifier
import fsl.utils.naninfrange as nir
import fsl.utils.memoize as memoize
import fsl.utils.path as fslpath
import fsl.utils.bids as fslbids
import fsl.data.constants as constants
PathLike = Union[str, Path]
ImageSource = Union[PathLike, nib.Nifti1Image, np.ndarray, 'Image']
log = logging.getLogger(__name__)
ALLOWED_EXTENSIONS = ['.nii.gz', '.nii', '.img', '.hdr', '.img.gz', '.hdr.gz']
"""The file extensions which we understand. This list is used as the default
if the ``allowedExts`` parameter is not passed to any of the ``*Ext``
functions, or the :func:`looksLikeImage` function.
"""
EXTENSION_DESCRIPTIONS = ['Compressed NIFTI images',
'NIFTI images',
'NIFTI/ANALYZE75 images',
'NIFTI/ANALYZE75 headers',
'Compressed NIFTI/ANALYZE75 images',
'Compressed NIFTI/ANALYZE75 headers']
"""Descriptions for each of the extensions in :data:`ALLOWED_EXTENSIONS`. """
FILE_GROUPS = [('.hdr', '.img'),
('.hdr.gz', '.img.gz')]
"""File suffix groups used by :func:`addExt` to resolve file path
ambiguities - see :func:`fsl.utils.path.addExt`.
"""
PathError = fslpath.PathError
"""Error raised by :mod:`fsl.utils.path` functions when an error occurs.
Made available in this module for convenience.
"""
class DataManager:
"""The ``DataManager`` defines an interface which may be used by
:class:`Image` instances for managing access and modification of
data in a ``nibabel.Nifti1Image`` image.
"""
def copy(self, nibImage : nib.Nifti1Image):
"""Return a copy of this ``DataManager``, associated with the
given ``nibImage``,
"""
raise NotImplementedError()
@property
def dataRange(self):
"""Return the image minimum/maximum data values as a ``(min, max)``
tuple.
"""
raise NotImplementedError()
@property
def editable(self):
"""Return ``True`` if the image data can be modified, ``False``
otherwise. The default implementation returns ``True``.
"""
return True
def __getitem__(self, slc):
"""Return data at ``slc``. """
raise NotImplementedError()
def __setitem__(self, slc, val):
"""Set data at ``slc`` to ``val``. """
raise NotImplementedError()
class Nifti(notifier.Notifier, meta.Meta):
"""The ``Nifti`` class is intended to be used as a base class for
things which either are, or are associated with, a NIFTI image.
The ``Nifti`` class is intended to represent information stored in
the header of a NIFTI file - if you want to load the data from
a file, use the :class:`Image` class instead.
When a ``Nifti`` instance is created, it adds the following attributes
to itself:
================= ====================================================
``header`` The :mod:`nibabel` NIFTI1/NIFTI2/Analyze header
object.
``shape`` A list/tuple containing the number of voxels along
each image dimension.
``realShape`` A list/tuple containing the actual image data shape
- see notes below.
``pixdim`` A list/tuple containing the length of one voxel
along each image dimension.
``voxToWorldMat`` A 4*4 array specifying the affine transformation
for transforming voxel coordinates into real world
coordinates.
``worldToVoxMat`` A 4*4 array specifying the affine transformation
for transforming real world coordinates into voxel
coordinates.
``intent`` The NIFTI intent code specified in the header (or
:attr:`.constants.NIFTI_INTENT_NONE` for Analyze
images).
================= ====================================================
The ``header`` field may either be a ``nifti1``, ``nifti2``, or
``analyze`` header object. Make sure to take this into account if you are
writing code that should work with all three. Use the :meth:`niftiVersion`
property if you need to know what type of image you are dealing with.
**Image dimensionality**
By default, the ``Nifti`` and ``Image`` classes "normalise" the
dimensionality of an image to always have at least 3 dimensions, and so
that trailing dimensions of length 1 are removed. Therefore, the
``shape`` attribute may not precisely match the image shape as reported in
the NIFTI header, because trailing dimensions of size 1 are squeezed
out. The actual image data shape can be queried via the :meth:`realShape`
property. Note also that the :class:`Image` class expects data
access/slicing to be with respect to the normalised shape, not the real
shape. See the :meth:`__determineShape` method and the
:func:`canonicalSliceObj` function for more details.
**Affine transformations**
The ``Nifti`` class is aware of three coordinate systems:
- The ``voxel`` coordinate system, used to access image data
- The ``world`` coordinate system, where voxel coordinates are
transformed into a millimetre coordinate system, defined by the
``sform`` and/or ``qform`` elements of the NIFTI header.
- The ``fsl`` coordinate system, where voxel coordinates are scaled by
the ``pixdim`` values in the NIFTI header, and the X axis is inverted
if the voxel-to-world affine has a positive determinant.
The :meth:`getAffine` method is a simple means of acquiring an affine
which will transform between any of these coordinate systems.
See `here <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ#What_is_the_format_of_the_matrix_used_by_FLIRT.2C_and_how_does_it_relate_to_the_transformation_parameters.3F>`_
for more details on the ``fsl`` coordinate system.
The ``Nifti`` class follows the same process as ``nibabel`` in determining
the ``voxel`` to ``world`` affine (see
http://nipy.org/nibabel/nifti_images.html#the-nifti-affines):
1. If ``sform_code != 0`` ("unknown") use the sform affine; else
2. If ``qform_code != 0`` ("unknown") use the qform affine; else
3. Use the fall-back affine.
However, the *fall-back* affine used by the ``Nifti`` class differs to
that used by ``nibabel``. In ``nibabel``, the origin (world coordinates
(0, 0, 0)) is set to the centre of the image. Here in the ``Nifti``
class, we set the world coordinate orign to be the corner of the image,
i.e. the corner of voxel (0, 0, 0).
You may change the ``voxToWorldMat`` of a ``Nifti`` instance (unless it
is an Analyze image). When you do so:
- Only the ``sform`` of the underlying ``Nifti1Header`` object is changed
- The ``qform`` is not modified.
- If the ``sform_code`` was previously set to ``NIFTI_XFORM_UNKNOWN``,
it is changed to ``NIFTI_XFORM_ALIGNED_ANAT``. Otherwise, the
``sform_code`` is not modified.
**ANALYZE support**
A ``Nifti`` instance expects to be passed either a
``nibabel.nifti1.Nifti1Header`` or a ``nibabel.nifti2.Nifti2Header``, but
can also encapsulate a ``nibabel.analyze.AnalyzeHeader``. In this case:
- The image voxel orientation is assumed to be R->L, P->A, I->S.
- The affine will be set to a diagonal matrix with the header pixdims as
its elements (with the X pixdim negated), and an offset specified by
the ANALYZE ``origin`` fields. Construction of the affine is handled
by ``nibabel``.
- The :meth:`niftiVersion` method will return ``0``.
- The :meth:`getXFormCode` method will return
:attr:`.constants.NIFTI_XFORM_ANALYZE`.
**Metadata**
The ``Image`` class inherits from the :class:`.Meta` class - its methods
can be used to store and query any meta-data associated with the image.
**Notification**
The ``Nifti`` class implements the :class:`.Notifier` interface -
listeners may register to be notified on the following topics:
=============== ========================================================
``'transform'`` The affine transformation matrix has changed. This topic
will occur when the :meth:`voxToWorldMat` is changed.
``'header'`` A header field has changed. This will occur when the
:meth:`intent` is changed.
=============== ========================================================
""" # noqa
def __init__(self, header):
"""Create a ``Nifti`` object.
:arg header: A :class:`nibabel.nifti1.Nifti1Header`,
:class:`nibabel.nifti2.Nifti2Header`, or
``nibabel.analyze.AnalyzeHeader`` to be used as the
image header.
"""
# Nifti2Header is a sub-class of Nifti1Header,
# and Nifti1Header a sub-class of AnalyzeHeader,
# so we only need to test for the latter.
if not isinstance(header, nib.analyze.AnalyzeHeader):
raise ValueError('Unrecognised header: {}'.format(header))
origShape, shape, pixdim = Nifti.determineShape(header)
voxToWorldMat = Nifti.determineAffine(header)
affines, isneuro = Nifti.generateAffines(voxToWorldMat,
shape,
pixdim)
self.__header = header
self.__shape = shape
self.__origShape = origShape
self.__pixdim = pixdim
self.__affines = affines
self.__isNeurological = isneuro
def __del__(self):
"""Clears the reference to the ``nibabel`` header object. """
self.__header = None
@staticmethod
def determineShape(header):
"""This method is called by :meth:`__init__`. It figures out the actual
shape of the image data, and the zooms/pixdims for each data axis. Any
empty trailing dimensions are squeezed, but the returned shape is
guaranteed to be at least 3 dimensions. Returns:
- A sequence/tuple containing the image shape, as reported in the
header.
- A sequence/tuple containing the effective image shape.
- A sequence/tuple containing the zooms/pixdims.
"""
# The canonicalShape function figures out
# the data shape that we should use.
origShape = list(header.get_data_shape())
shape = canonicalShape(origShape)
pixdims = list(header.get_zooms())
# if get_zooms() doesn't return at
# least len(shape) values, we'll
# fall back to the pixdim field in
# the header.
if len(pixdims) < len(shape):
pixdims = header['pixdim'][1:]
pixdims = pixdims[:len(shape)]
# should never happen, but if we only
# have zoom values for the original
# (< 3D) shape, pad them with 1s.
if len(pixdims) < len(shape):
pixdims = pixdims + [1] * (len(shape) - len(pixdims))
return origShape, shape, pixdims
@staticmethod
def determineAffine(header):
"""Called by :meth:`__init__`. Figures out the voxel-to-world
coordinate transformation matrix that is associated with this
``Nifti`` instance.
"""
# We have to treat FSL/FNIRT images
# specially, as FNIRT clobbers the
# sform section of the NIFTI header
# to store other data.
intent = header.get('intent_code', -1)
qform = header.get('qform_code', -1)
sform = header.get('sform_code', -1)
# FNIRT non-linear coefficient files
# clobber the sform/qform/intent
# and pixdims of the nifti header,
# so we can't correctly place it in
# the world coordinate system. See
# $FSLDIR/src/fnirt/fnirt_file_writer.cpp
# and fsl.transform.nonlinear for more
# details.
if intent in (constants.FSL_DCT_COEFFICIENTS,
constants.FSL_CUBIC_SPLINE_COEFFICIENTS,
constants.FSL_QUADRATIC_SPLINE_COEFFICIENTS,
constants.FSL_TOPUP_CUBIC_SPLINE_COEFFICIENTS,
constants.FSL_TOPUP_QUADRATIC_SPLINE_COEFFICIENTS):
log.debug('FNIRT coefficient field detected - generating affine')
# Knot spacing is stored in the pixdims
# (specified in terms of reference image
# voxels), and reference image pixdims
# are stored as intent code parameters.
# If we combine the two, we can at least
# get the shape/size of the coefficient
# field about right
knotpix = header.get_zooms()[:3]
refpix = (header.get('intent_p1', 1) or 1,
header.get('intent_p2', 1) or 1,
header.get('intent_p3', 1) or 1)
voxToWorldMat = affine.concat(
affine.scaleOffsetXform(refpix, 0),
affine.scaleOffsetXform(knotpix, 0))
# If the qform or sform codes are unknown,
# then we can't assume that the transform
# matrices are valid. So we fall back to a
# pixdim scaling matrix.
#
# n.b. For images like this, nibabel returns
# a scaling matrix where the centre voxel
# corresponds to world location (0, 0, 0).
# This goes against the NIFTI spec - it
# should just be a straight scaling matrix.
elif qform == 0 and sform == 0:
pixdims = header.get_zooms()
voxToWorldMat = affine.scaleOffsetXform(pixdims, 0)
# Otherwise we let nibabel decide
# which transform to use.
else:
voxToWorldMat = np.array(header.get_best_affine())
return voxToWorldMat
@staticmethod
def generateAffines(voxToWorldMat, shape, pixdim):
"""Called by :meth:`__init__`, and the :meth:`voxToWorldMat` setter.
Generates and returns a dictionary containing affine transformations
between the ``voxel``, ``fsl``, and ``world`` coordinate
systems. These affines are accessible via the :meth:`getAffine`
method.
:arg voxToWorldMat: The voxel-to-world affine transformation
:arg shape: Image shape (number of voxels along each dimension
:arg pixdim: Image pixdims (size of one voxel along each
dimension)
:returns: A tuple containing:
- a dictionary of affine transformations between
each pair of coordinate systems
- ``True`` if the image is to be considered
"neurological", ``False`` otherwise - see the
:meth:`isNeurological` method.
"""
import numpy.linalg as npla
affines = {}
shape = list(shape[ :3])
pixdim = list(pixdim[:3])
voxToScaledVoxMat = np.diag(pixdim + [1.0])
isneuro = npla.det(voxToWorldMat) > 0
if isneuro:
x = (shape[0] - 1) * pixdim[0]
flip = affine.scaleOffsetXform([-1, 1, 1],
[ x, 0, 0])
voxToScaledVoxMat = affine.concat(flip, voxToScaledVoxMat)
affines['fsl', 'fsl'] = np.eye(4)
affines['voxel', 'voxel'] = np.eye(4)
affines['world', 'world'] = np.eye(4)
affines['voxel', 'world'] = voxToWorldMat
affines['world', 'voxel'] = affine.invert(voxToWorldMat)
affines['voxel', 'fsl'] = voxToScaledVoxMat
affines['fsl', 'voxel'] = affine.invert(voxToScaledVoxMat)
affines['fsl', 'world'] = affine.concat(affines['voxel', 'world'],
affines['fsl', 'voxel'])
affines['world', 'fsl'] = affine.concat(affines['voxel', 'fsl'],
affines['world', 'voxel'])
return affines, isneuro
@staticmethod
def identifyAffine(image, xform, from_=None, to=None):
"""Attempt to identify the source or destination space for the given
affine.
``xform`` is assumed to be an affine transformation which can be used
to transform coordinates between two coordinate systems associated with
``image``.
If one of ``from_`` or ``to`` is provided, the other will be derived.
If neither are provided, both will be derived. See the
:meth:`.Nifti.getAffine` method for details on the valild values that
``from_`` and ``to`` may take.
:arg image: :class:`.Nifti` instance associated with the affine.
:arg xform: ``(4, 4)`` ``numpy`` array encoding an affine
transformation
:arg from_: Label specifying the coordinate system which ``xform``
takes as input
:arg to: Label specifying the coordinate system which ``xform``
produces as output
:returns: A tuple containing:
- A label for the ``from_`` coordinate system
- A label for the ``to`` coordinate system
"""
if (from_ is not None) and (to is not None):
return from_, to
if from_ is not None: froms = [from_]
else: froms = ['voxel', 'fsl', 'world']
if to is not None: tos = [to]
else: tos = ['voxel', 'fsl', 'world']
for from_, to in it.product(froms, tos):
candidate = image.getAffine(from_, to)
if np.all(np.isclose(candidate, xform)):
return from_, to
raise ValueError('Could not identify affine')
def strval(self, key):
"""Returns the specified NIFTI header field, converted to a python
string, with non-printable characters removed.
This method is used to sanitise some NIFTI header fields. The default
Python behaviour for converting a sequence of bytes to a string is to
strip all termination characters (bytes with value of ``0x00``) from
the end of the sequence.
This default behaviour does not handle the case where a sequence of
bytes which did contain a long string is subsequently overwritten with
a shorter string - the short string will be terminated, but that
termination character will be followed by the remainder of the
original string.
"""
val = self.header[key]
try: val = bytes(val).partition(b'\0')[0]
except Exception: val = bytes(val)
val = [chr(c) for c in val]
val = ''.join(c for c in val if c in string.printable).strip()
return val
@property
def header(self):
"""Return a reference to the ``nibabel`` header object. """
return self.__header
@header.setter
def header(self, header):
"""Replace the ``nibabel`` header object managed by this ``Nifti``
with a new header. The new header must have the same dimensions,
voxel size, and orientation as the old one.
"""
new = Nifti(header)
if not (self.sameSpace(new) and self.ndim == new.ndim):
raise ValueError('Incompatible header')
self.__header = header
@property
def niftiVersion(self):
"""Returns the NIFTI file version:
- ``0`` for ANALYZE
- ``1`` for NIFTI1
- ``2`` for NIFTI2
"""
# nib.Nifti2 is a subclass of Nifti1,
# and Nifti1 a subclass of Analyze,
# so we have to check in order
if isinstance(self.header, nib.nifti2.Nifti2Header): return 2
elif isinstance(self.header, nib.nifti1.Nifti1Header): return 1
elif isinstance(self.header, nib.analyze.AnalyzeHeader): return 0
else: raise RuntimeError('Unrecognised header: {}'.format(self.header))
@property
def shape(self):
"""Returns a tuple containing the normalised image data shape. The
image shape is at least three dimensions, and trailing dimensions of
length 1 are squeezed out.
"""
return tuple(self.__shape)
@property
def realShape(self):
"""Returns a tuple containing the image data shape, as reported in
the NIfTI image header.
"""
return tuple(self.__origShape)
@property
def ndim(self):
"""Returns the number of dimensions in this image. This number may not
match the number of dimensions specified in the NIFTI header, as
trailing dimensions of length 1 are ignored. But it is guaranteed to be
at least 3.
"""
return len(self.__shape)
@property
def pixdim(self):
"""Returns a tuple containing the image pixdims (voxel sizes)."""
return tuple(self.__pixdim)
@property
def intent(self):
"""Returns the NIFTI intent code of this image. """
return self.header.get('intent_code', constants.NIFTI_INTENT_NONE)
@property
def niftiDataType(self):
"""Returns the NIFTI data type code of this image. """
dt = self.header.get('datatype', constants.NIFTI_DT_UNKNOWN)
return int(dt)
@property
def niftiDataTypeSize(self):
"""Returns the number of bits per voxel, according to the NIfTI
data type. Returns ``None`` if the data type is not recognised.
"""
sizes = {
constants.NIFTI_DT_BINARY : 1,
constants.NIFTI_DT_UNSIGNED_CHAR : 8,
constants.NIFTI_DT_SIGNED_SHORT : 16,
constants.NIFTI_DT_SIGNED_INT : 32,
constants.NIFTI_DT_FLOAT : 32,
constants.NIFTI_DT_COMPLEX : 64,
constants.NIFTI_DT_DOUBLE : 64,
constants.NIFTI_DT_RGB : 24,
constants.NIFTI_DT_UINT8 : 8,
constants.NIFTI_DT_INT16 : 16,
constants.NIFTI_DT_INT32 : 32,
constants.NIFTI_DT_FLOAT32 : 32,
constants.NIFTI_DT_COMPLEX64 : 64,
constants.NIFTI_DT_FLOAT64 : 64,
constants.NIFTI_DT_RGB24 : 24,
constants.NIFTI_DT_INT8 : 8,
constants.NIFTI_DT_UINT16 : 16,
constants.NIFTI_DT_UINT32 : 32,
constants.NIFTI_DT_INT64 : 64,
constants.NIFTI_DT_UINT64 : 64,
constants.NIFTI_DT_FLOAT128 : 128,
constants.NIFTI_DT_COMPLEX128 : 128,
constants.NIFTI_DT_COMPLEX256 : 256,
constants.NIFTI_DT_RGBA32 : 32}
return sizes.get(self.niftiDataType, None)
@intent.setter
def intent(self, val):
"""Sets the NIFTI intent code of this image. """
# analyze has no intent
if (self.niftiVersion > 0) and (val != self.intent):
self.header.set_intent(val, allow_unknown=True)
self.notify(topic='header')
@property
def xyzUnits(self):
"""Returns the NIFTI XYZ dimension unit code. """
# analyze images have no unit field
if self.niftiVersion == 0:
return constants.NIFTI_UNITS_MM
# The nibabel get_xyzt_units returns labels,
# but we want the NIFTI codes. So we use
# the (undocumented) nifti1.unit_codes field
# to convert back to the raw codes.
units = self.header.get_xyzt_units()[0]
units = nib.nifti1.unit_codes[units]
return units
@property
def timeUnits(self):
"""Returns the NIFTI time dimension unit code. """
# analyze images have no unit field
if self.niftiVersion == 0:
return constants.NIFTI_UNITS_SEC
# See xyzUnits
units = self.header.get_xyzt_units()[1]
units = nib.nifti1.unit_codes[units]
return units
def getAffine(self, from_, to):
"""Return an affine transformation which can be used to transform
coordinates from ``from_`` to ``to``.
Valid values for the ``from_`` and ``to`` arguments are:
- ``'voxel'``: The voxel coordinate system
- ``'world'``: The world coordinate system, as defined by the image
sform/qform
- ``'fsl'``: The FSL coordinate system (scaled voxels, with a
left-right flip if the sform/qform has a positive determinant)
:arg from_: Source coordinate system
:arg to: Destination coordinate system
:returns: A ``numpy`` array of shape ``(4, 4)``
"""
from_ = from_.lower()
to = to .lower()
if from_ not in ('voxel', 'fsl', 'world') or \
to not in ('voxel', 'fsl', 'world'):
raise ValueError('Invalid source/reference spaces: "{}" -> "{}".'
'Recognised spaces are "voxel", "fsl", and '
'"world"'.format(from_, to))
return np.copy(self.__affines[from_, to])
@property
def worldToVoxMat(self):
"""Returns a ``numpy`` array of shape ``(4, 4)`` containing an
affine transformation from world coordinates to voxel coordinates.
"""
return self.getAffine('world', 'voxel')
@property
def voxToWorldMat(self):
"""Returns a ``numpy`` array of shape ``(4, 4)`` containing an
affine transformation from voxel coordinates to world coordinates.
"""
return self.getAffine('voxel', 'world')
@voxToWorldMat.setter
def voxToWorldMat(self, xform):
"""Update the ``voxToWorldMat``. The ``worldToVoxMat`` value is also
updated. This will result in notification on the ``'transform'``
topic.
"""
# Can't do much with
# an analyze image
if self.niftiVersion == 0:
raise Exception('voxToWorldMat cannot be '
'changed for an ANALYZE image')
header = self.header
sformCode = int(header['sform_code'])
if sformCode == constants.NIFTI_XFORM_UNKNOWN:
sformCode = constants.NIFTI_XFORM_ALIGNED_ANAT
header.set_sform(xform, code=sformCode)
affines, isneuro = Nifti.generateAffines(xform,
self.shape,
self.pixdim)
self.__affines = affines
self.__isNeurological = isneuro
log.debug('Affine changed:\npixdims: '
'%s\nsform: %s\nqform: %s',
header.get_zooms(),
header.get_sform(),
header.get_qform())
self.notify(topic='transform')
@property
def voxToScaledVoxMat(self):
"""Returns a transformation matrix which transforms from voxel
coordinates into scaled voxel coordinates, with a left-right flip
if the image appears to be stored in neurological order.
See http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ#What_is_the\
_format_of_the_matrix_used_by_FLIRT.2C_and_how_does_it_relate_to\
_the_transformation_parameters.3F
"""
return self.getAffine('voxel', 'fsl')
@property
def scaledVoxToVoxMat(self):
"""Returns a transformation matrix which transforms from scaled voxels
into voxels, the inverse of the :meth:`voxToScaledVoxMat` transform.
"""
return self.getAffine('fsl', 'voxel')
@deprecated.deprecated('3.9.0', '4.0.0', 'Use canonicalSliceObj instead')
def mapIndices(self, sliceobj):
"""Deprecated - use :func:`canonicalSliceObj` instead. """
return fileslice.canonical_slicers(sliceobj, self.__origShape)
def getXFormCode(self, code=None):
"""This method returns the code contained in the NIFTI header,
indicating the space to which the (transformed) image is oriented.
The ``code`` parameter may be either ``sform`` (the default) or
``qform`` in which case the corresponding matrix is used.
:returns: one of the following codes:
- :data:`~.constants.NIFTI_XFORM_UNKNOWN`
- :data:`~.constants.NIFTI_XFORM_SCANNER_ANAT`
- :data:`~.constants.NIFTI_XFORM_ALIGNED_ANAT`
- :data:`~.constants.NIFTI_XFORM_TALAIRACH`
- :data:`~.constants.NIFTI_XFORM_MNI_152`
- :data:`~.constants.NIFTI_XFORM_TEMPLATE_OTHER`
- :data:`~.constants.NIFTI_XFORM_ANALYZE`
"""
if self.niftiVersion == 0:
return constants.NIFTI_XFORM_ANALYZE
if code == 'sform' : code = 'sform_code'
elif code == 'qform' : code = 'qform_code'
elif code is not None:
raise ValueError('code must be None, sform, or qform')
if code is not None:
code = self.header[code]
# If the caller did not specify
# a code, we check both. If the
# sform is present, we return it.
# Otherwise, if the qform is
# present, we return that.
else:
sform_code = self.header['sform_code']
qform_code = self.header['qform_code']
if sform_code != constants.NIFTI_XFORM_UNKNOWN: code = sform_code
elif qform_code != constants.NIFTI_XFORM_UNKNOWN: code = qform_code
# Invalid code (the maxmimum NIFTI_XFORM_*
# code value is 5 at present)
if code not in range(6):
code = constants.NIFTI_XFORM_UNKNOWN
return int(code)
# TODO Check what has worse performance - hashing
# a 4x4 array (via memoizeMD5), or the call
# to aff2axcodes. I'm guessing the latter,
# but am not 100% sure.
@memoize.Instanceify(memoize.memoizeMD5)
def axisMapping(self, xform):
"""Returns the (approximate) correspondence of each axis in the source
coordinate system to the axes in the destination coordinate system,
where the source and destinations are defined by the given affine
transformation matrix.
"""
inaxes = [[-1, 1], [-2, 2], [-3, 3]]
return nib.orientations.aff2axcodes(xform, inaxes)
def isNeurological(self):
"""Returns ``True`` if it looks like this ``Nifti`` object has a
neurological voxel orientation, ``False`` otherwise. This test is
purely based on the determinant of the voxel-to-mm transformation
matrix - if it has a positive determinant, the image is assumed to
be in neurological orientation, otherwise it is assumed to be in
radiological orientation.
..warning:: This method will return ``True`` for images with an
unknown orientation (e.g. the ``sform_code`` and
``qform_code`` are both set to ``0``). Therefore, you
must check the orientation via the :meth:`getXFormCode`
before trusting the result of this method.
See http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/FAQ#What_is_the\
_format_of_the_matrix_used_by_FLIRT.2C_and_how_does_it_relate_to\
_the_transformation_parameters.3F
"""
return self.__isNeurological
def sameSpace(self, other):
"""Returns ``True`` if the ``other`` image (assumed to be a
:class:`Nifti` instance) has the same dimensions and is in the
same space as this image.
"""
return np.all(np.isclose(self .shape[:3],
other.shape[:3])) and \
np.all(np.isclose(self .pixdim[:3],
other.pixdim[:3])) and \
np.all(np.isclose(self .voxToWorldMat,
other.voxToWorldMat))
def getOrientation(self, axis, xform):
"""Returns a code representing the orientation of the specified
axis in the input coordinate system of the given transformation
matrix.
:arg xform: A transformation matrix which is assumed to transform
coordinates from some coordinate system (the one
which you want an orientation for) into the image
world coordinate system.
For example, if you pass in the voxel-to-world
transformation matrix, you will get an orientation
for axes in the voxel coordinate system.
This method returns one of the following values, indicating the
direction in which coordinates along the specified axis increase:
- :attr:`~.constants.ORIENT_L2R`: Left to right
- :attr:`~.constants.ORIENT_R2L`: Right to left
- :attr:`~.constants.ORIENT_A2P`: Anterior to posterior
- :attr:`~.constants.ORIENT_P2A`: Posterior to anterior
- :attr:`~.constants.ORIENT_I2S`: Inferior to superior
- :attr:`~.constants.ORIENT_S2I`: Superior to inferior
- :attr:`~.constants.ORIENT_UNKNOWN`: Orientation is unknown
The returned value is dictated by the XForm code contained in the
image file header (see the :meth:`getXFormCode` method). Basically, if
the XForm code is *unknown*, this method will return
``ORIENT_UNKNOWN`` for all axes. Otherwise, it is assumed that the
image is in RAS orientation (i.e. the X axis increases from left to
right, the Y axis increases from posterior to anterior, and the Z axis
increases from inferior to superior).
"""
if self.getXFormCode() == constants.NIFTI_XFORM_UNKNOWN:
return constants.ORIENT_UNKNOWN
code = nib.orientations.aff2axcodes(
xform,
((constants.ORIENT_R2L, constants.ORIENT_L2R),
(constants.ORIENT_A2P, constants.ORIENT_P2A),
(constants.ORIENT_S2I, constants.ORIENT_I2S)))[axis]
return code
def adjust(self, pixdim=None, shape=None, origin=None):
"""Return a new ``Nifti`` object with the specified ``pixdim`` or
``shape``. The affine of the new ``Nifti`` is adjusted accordingly.
Only one of ``pixdim`` or ``shape`` can be specified.
See :func:`.affine.rescale` for the meaning of the ``origin`` argument.
Only the spatial dimensions may be adjusted - use the functions in
the :mod:`.image.resample` module if you need to adjust non-spatial
dimensions.
:arg pixdim: New voxel dimensions
:arg shape: New image shape
:arg origin: Voxel grid alignment - either ``'centre'`` (the default)
or ``'corner'``
:returns: A new ``Nifti`` object based on this one, with adjusted
pixdims, shape and affine.
"""
if ((pixdim is not None) and (shape is not None)) or \
((pixdim is None) and (shape is None)):
raise ValueError('Exactly one of pixdim or '
'shape must be specified')
if shape is not None: ndim = len(shape)
else: ndim = len(pixdim)
# We only allow adjustment of
# the spatial dimensions
if ndim != 3: