-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining.py
282 lines (250 loc) · 11.7 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from utils import process_for_training, is_gan, load_model, get_optimizer, get_criterion, process_for_eval, get_loss, load_data
import models
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torchgeometry as tgm
import csv
import numpy as np
from torch.utils.data import DataLoader, TensorDataset
from torchmetrics.functional import multiscale_structural_similarity_index_measure, structural_similarity_index_measure
from skimage import transform
device = 'cuda'
def run_training(args, data):
model = load_model(args)
print('#params:', sum(p.numel() for p in model.parameters()))
optimizer = get_optimizer(args, model)
criterion = get_criterion(args)
if is_gan(args):
discriminator_model = load_model(args, discriminator=True)
print('#params discr.:', sum(p.numel() for p in discriminator_model.parameters()))
optimizer_discr = get_optimizer(args, discriminator_model)
criterion_discr = get_criterion(args, discriminator=True)
best = np.inf
for epoch in range(args.epochs):
running_loss = 0
running_discr_loss = 0
running_adv_loss = 0
for (inputs, targets) in data[0]:
inputs, targets = process_for_training(inputs, targets)
if is_gan(args):
loss, discr_loss = gan_optimizer_step(model, discriminator_model, optimizer, optimizer_discr, criterion, criterion_discr, inputs, targets, data[0], args, criterion_mr)
running_loss += loss
running_discr_loss += discr_loss
else:
loss = optimizer_step(model, optimizer, criterion, inputs, targets, data[0], args)
running_loss += loss
loss = running_loss/len(data[0])
if is_gan(args):
dicsr_loss = running_discr_loss/len(data)
print('Epoch {}, Train Loss: {:.5f}, Discr. Loss{:.5f}'.format(
epoch+1, loss, discr_loss))
disc_loss.append(discr_loss)
else:
print('Epoch {}, Train Loss: {:.5f}'.format(epoch+1, loss))
if is_gan(args):
val_loss = validate_model(model, criterion, data[1], best, epoch, args, discriminator_model, criterion_discr)
else:
val_loss = validate_model(model, criterion, data[1], best, epoch, args)
print('Val loss: {:.5f}'.format(val_loss))
checkpoint(model, val_loss, best, args, epoch)
best = np.minimum(best, val_loss)
data = load_data(args)
scores = evaluate_model( data, args)
def optimizer_step(model, optimizer, criterion, inputs, targets, tepoch, args, discriminator=False):
optimizer.zero_grad()
outputs = model(inputs)
loss = get_loss(outputs, targets, inputs,args)
loss.backward()
optimizer.step()
return loss.item()
def gan_optimizer_step(model, discriminator_model, optimizer, optimizer_discr, criterion, criterion_discr, inputs, targets, tepoch, args):
optimizer_discr.zero_grad()
z = np.random.normal( size=[inputs.shape[0], 100])
z = torch.Tensor(z).to(device)
outputs = model(inputs, z)
batch_size = inputs.shape[0]
real_label = torch.full((batch_size, 1), 1, dtype=outputs.dtype).to(device)
fake_label = torch.full((batch_size, 1), 0, dtype=outputs.dtype).to(device)
real_output = discriminator_model(targets)
fake_output = discriminator_model(outputs.detach())
# Adversarial loss for real and fake images
d_loss_real = criterion_discr(real_output, real_label)
d_loss_fake = criterion_discr(fake_output, fake_label)
d_loss = d_loss_real + d_loss_fake
d_loss.backward()
optimizer_discr.step()
optimizer.zero_grad()
reg_loss = criterion(outputs, targets)
loss = args.reg_factor*reg_loss
# Adversarial loss for real and fake images (relativistic average GAN)
adversarial_loss = criterion_discr(discriminator_model(outputs), real_label)
loss += args.adv_factor * adversarial_loss
loss.backward()
optimizer.step()
return loss.item(), d_loss.item()
def validate_model(model, criterion, data, best, epoch, args, discriminator_model=None, criterion_discr=None):
model.eval()
running_loss = 0
for i, (inputs, targets) in enumerate(data):
inputs, targets = process_for_training(inputs, targets)
if is_gan(args):
z = np.random.normal( size=[inputs.shape[0], 100])
z = torch.Tensor(z).to(device)
outputs = model(inputs, z)
reg_loss = criterion(outputs, targets)
loss = args.reg_factor*reg_loss
batch_size = inputs.shape[0]
real_label = torch.full((batch_size, 1), 1, dtype=outputs.dtype).to(device)
fake_output = discriminator_model(outputs.detach())
adversarial_loss = criterion_discr(fake_output.detach(), real_label)
loss += args.adv_factor * adversarial_loss
else:
outputs = model(inputs)
loss = get_loss(outputs, targets, inputs, args)
running_loss += loss.item()
loss = running_loss/len(data)
model.train()
return loss
Tensor = torch.cuda.FloatTensor
def checkpoint(model, val_loss, best, args, epoch):
if val_loss < best:
checkpoint = {'model': model,'state_dict': model.state_dict()}
torch.save(checkpoint, './models/'+args.model_id+'.pth')
def evaluate_model(data, args):
model = load_model(args)
load_weights(model, args.model_id)
model.eval()
full_pred = torch.zeros(data[8])
with tqdm(data[1], unit="batch") as tepoch:
for i,(inputs, targets) in enumerate(tepoch):
inputs, targets = process_for_training(inputs, targets)
if is_gan(args):
outputs = torch.zeros((targets.shape[0],10,1,1,targets.shape[3],targets.shape[4])).to(device)
for j in range(10):
z = np.random.normal( size=[inputs.shape[0], 100])
z = torch.Tensor(z).to(device)
outputs[:,j,...] = model(inputs, z)
else:
outputs = model(inputs)
outputs, targets = process_for_eval(outputs, targets,data[2], data[3], data[4], args)
full_pred[i*args.batch_size:i*args.batch_size+outputs.shape[0],...] = outputs.detach().cpu()
if is_gan(args):
print('saving', full_pred.mean())
torch.save(full_pred, './data/prediction/'+args.dataset+'_'+args.model_id+ '_' + args.test_val_train+'_ensemble.pt')
else:
torch.save(full_pred, './data/prediction/'+args.dataset+'_'+args.model_id+ '_' + args.test_val_train+'.pt')
calculate_scores(args)
def calculate_scores(args):
input_val = torch.load('./data/'+args.dataset+'/'+ args.test_val_train+'/input_'+ args.test_val_train+'.pt')
target_val = torch.load('./data/'+args.dataset+'/'+ args.test_val_train+'/target_'+ args.test_val_train+'.pt')
val_data = TensorDataset(input_val, target_val)
pred = np.zeros(target_val.shape)
max_val = target_val.max()
min_val = target_val.min()
mse = 0
mae = 0
ssim = 0
mean_bias = 0
mean_abs_bias = 0
mass_violation = 0
ms_ssim = 0
corr = 0
crps = 0
neg_mean = 0
neg_num = 0
l2_crit = nn.MSELoss()
l1_crit = nn.L1Loss()
if args.model == 'gan':
en_pred = torch.load('./data/prediction/'+args.dataset+'_'+args.model_id+ '_' + args.test_val_train+'_ensemble.pt')
pred = torch.mean(en_pred, dim=1)
en_pred = en_pred.detach().cpu().numpy()
else:
pred = torch.load('./data/prediction/'+args.dataset+'_'+args.model_id+ '_' + args.test_val_train+'.pt')
#torch.save(full_pred, './data/prediction/'+args.dataset+'_'+args.model_id+ '_' + args.test_val_train+'.pt')
pred = pred.detach().cpu().numpy()
j = 0
for i,(lr, hr) in enumerate(val_data):
im = lr.numpy()
mse += l2_crit(torch.Tensor(pred[i,j,...]), hr[j,...]).item()
mae += l1_crit(torch.Tensor(pred[i,j,...]), hr[j,...]).item()
mean_bias += torch.mean( hr[j,...]-torch.Tensor(pred[i,j,...]))
mean_abs_bias += torch.abs(torch.mean( hr[j,...]-torch.Tensor(pred[i,j,...])))
corr += pearsonr(torch.Tensor(pred[i,j,...]).flatten(), hr[j,...].flatten())
ms_ssim += multiscale_structural_similarity_index_measure(torch.Tensor(pred[i,j:j+1,...]), hr[j:j+1,...], data_range=max_val-min_val, kernel_size=11, betas=(0.2856, 0.3001, 0.2363))
ssim += structural_similarity_index_measure(torch.Tensor(pred[i,j:j+1,...]), hr[j:j+1,...] , data_range=max_val-min_val, kernel_size=11)
neg_num += np.sum(pred[i,j,...] < 0)
neg_mean += np.sum(pred[pred < 0])/(pred.shape[-1]*pred.shape[-1])
if args.model == 'gan':
crps_ens = crps_ensemble(hr[j,0,...].numpy(), en_pred[i,:,j,0,...])
crps += crps_ens
mass_violation += np.mean( np.abs(transform.downscale_local_mean(pred[i,j,...], (1,args.upsampling_factor,args.upsampling_factor)) -im[j,...]))
mse *= 1/input_val.shape[0]
mae *= 1/input_val.shape[0]
ssim *= 1/input_val.shape[0]
mean_bias *= 1/input_val.shape[0]
mean_abs_bias *= 1/input_val.shape[0]
corr *= 1/input_val.shape[0]
ms_ssim *= 1/input_val.shape[0]
crps *= 1/input_val.shape[0]
neg_mean *= 1/input_val.shape[0]
mass_violation *= 1/input_val.shape[0]
psnr = calculate_pnsr(mse, target_val.max() )
rmse = torch.sqrt(torch.Tensor([mse])).numpy()[0]
ssim = float(ssim.numpy())
ms_ssim =float( ms_ssim.numpy())
psnr = psnr.numpy()
corr = float(corr.numpy())
mean_bias = float(mean_bias.numpy())
mean_abs_bias = float(mean_abs_bias.numpy())
scores = {'MSE':mse, 'RMSE':rmse, 'PSNR': psnr[0], 'MAE':mae, 'SSIM':ssim, 'MS SSIM': ms_ssim, 'Pearson corr': corr, 'Mean bias': mean_bias, 'Mean abs bias': mean_abs_bias, 'Mass_violation': mass_violation, 'neg mean': neg_mean, 'neg num': neg_num,'CRPS': crps}
print(scores)
create_report(scores, args)
def calculate_pnsr(mse, max_val):
return 20 * torch.log10(max_val / torch.sqrt(torch.Tensor([mse])))
def create_report(scores, args):
args_dict = args_to_dict(args)
#combine scorees and args dict
args_scores_dict = args_dict | scores
#save dict
save_dict(args_scores_dict, args)
def args_to_dict(args):
return vars(args)
def save_dict(dictionary, args):
w = csv.writer(open('./data/'+args.model_id+'.csv', 'w'))
# loop over dictionary keys and values
for key, val in dictionary.items():
# write every key and value to file
w.writerow([key, val])
def load_weights(model, model_id):
PATH = '/home/harder/constrained-downscaling/models/'+model_id+'.pth'
checkpoint = torch.load(PATH) # ie, model_best.pth.tar
model.load_state_dict(checkpoint['state_dict'])
model.to('cuda')
return model
def pearsonr(x, y):
mean_x = torch.mean(x)
mean_y = torch.mean(y)
xm = x.sub(mean_x)
ym = y.sub(mean_y)
r_num = xm.dot(ym)
r_den = torch.norm(xm, 2) * torch.norm(ym, 2)
r_val = r_num / r_den
return r_val
def crps_ensemble(observation, forecasts):
fc = forecasts.copy()
fc.sort(axis=0)
obs = observation
fc_below = fc<obs[None,...]
crps = np.zeros_like(obs)
for i in range(fc.shape[0]):
below = fc_below[i,...]
weight = ((i+1)**2 - i**2) / fc.shape[-1]**2
crps[below] += weight * (obs[below]-fc[i,...][below])
for i in range(fc.shape[0]-1,-1,-1):
above = ~fc_below[i,...]
k = fc.shape[0]-1-i
weight = ((k+1)**2 - k**2) / fc.shape[0]**2
crps[above] += weight * (fc[i,...][above]-obs[above])
return np.mean(crps)