-
Notifications
You must be signed in to change notification settings - Fork 0
/
double-multi.tex
530 lines (505 loc) · 21.7 KB
/
double-multi.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
% -*- root: thesis.tex -*-
\chapter{CYCLIC 2-FOLD DOUBLE MULTICATEGORIES}\label{Ch:DblMulti}
In this chapter we will complete our goal of defining a common generalization of the cyclic double multicategories of~\cite{cgr:mates} and the cyclic 2-fold double categories introduced in \cref{Ch:Cyclic}, showing that there is a natural notion of multivariable morphisms of bimonads in such structures, and constructing a cyclic 2-fold double multicategory of functorial factorizations in which the multivariable bimonad morphisms recover the multivariable (co)lax morphisms of awfs defined in~\cite{riehl:nwfs-monoidal}.
A cyclic two-fold double multicategory $\dblcat{M}$ consists of the same underlying data as a cyclic double multicategory, i.e. a vertical multicategory, horizontal 1-cells, and 2-cells of the form
\begin{equation*}\label{Eq:DblMulti2Cell}
\begin{tikzcd}[column sep=4em]
C_1,\dots,C_n \rar[][domA]{X_1,\dots,X_n} \dar[swap]{F}
& C_1,\dots,C_n \dar{F} \\
C_0^{\bullet} \rar[][swap,codA]{X_0^{\bullet}}
& C_0^{\bullet}
\twocellA{\theta}
\end{tikzcd}
\end{equation*}
which compose vertically in the same way as in a cyclic double multicategory, and where as in a two-fold double multicategory the horizontal 1-cells are endomorphisms. There are two composition structures on the horizontal 1-cells, $(I,\otimes)$ and $(\perp,\odot)$, such that for any object $C$, $(I_C)^{\bullet}=\perp_{C^{\bullet}}$ and $(\perp_C)^{\bullet}=I_{C^{\bullet}}$, and such that for any composable pair of horizontal 1-cells $X$, and $Y$, $(X\otimes Y)^{\bullet}=X^{\bullet}\odot Y^{\bullet}$ and $(X\odot Y)^{\bullet}=X^{\bullet}\otimes Y^{\bullet}$.
Perhaps surprisingly, given two composable 2-cells
\[
\begin{tikzcd}[column sep=4em]
C_1,\dots,C_n \rar[][domA]{X_1,\dots,X_n} \dar[swap]{F}
& C_1,\dots,C_n \dar{F} \rar[][domB]{Y_1,\dots,Y_n}
& C_1,\dots,C_n \dar{F} \\
C_0^{\bullet} \rar[][swap,codA]{X_0^{\bullet}}
& C_0^{\bullet} \rar[][swap,codB]{Y_0^{\bullet}}
& C_0^{\bullet}
\twocellA{\theta}
\twocellB{\phi}
\end{tikzcd}
\]
there are $(n+1)$ different horizontal compositions:
\[
\begin{tikzcd}[column sep=9em]
C_1,\dots,C_n \rar[][domA]{X_1\odot Y_1,\dots,X_i\otimes Y_i,\dots,X_n\odot Y_n} \dar[swap]{F}
& C_1,\dots,C_n \dar{F} \\
C_0^{\bullet} \rar[][swap,codA]{(X_0\odot Y_0)^{\bullet}}
& C_{0}^{\bullet}
\twocellA{\theta\otimes_i\phi}
\end{tikzcd}
\]
for $i\in\{1,\dots,n\}$, and
\[
\begin{tikzcd}[column sep=6.5em]
C_1,\dots,C_n \rar[][domA]{X_1\odot Y_1,\dots,X_n\odot Y_n} \dar[swap]{F}
& C_1,\dots,C_n \dar{F} \\
C_0^{\bullet} \rar[][swap,codA]{(X_0\otimes Y_0)^{\bullet}}
& C_0^{\bullet}.
\twocellA{\theta\otimes_0\phi}
\end{tikzcd}
\]
In all cases, there is exactly one $\otimes$ in the $i$th position, and the rest of the horizontal compositions are $\odot$. Notice that this pattern only holds when using the convention of dualizing everything in the codomain. Similarly, given any vertical $n$-ary 1-cell $F$, there are $(n+1)$ unit 2-cells:
\[
\begin{tikzcd}[column sep=6em]
C_1,\dots,C_n \rar[][domA]{\perp_{C_1},\dots,I_{C_i},\dots,\perp_{C_n}} \dar[swap]{F}
& C_1,\dots,C_n \dar{F} \\
C_0^{\bullet} \rar[][swap,codA]{\perp_{C_0}^{\bullet}}
&C_0^{\bullet}
\twocellA{I_{iF}}
\end{tikzcd}
\]
for $i\in\{1,\dots,n\}$, and
\[
\begin{tikzcd}[column sep=4em]
C_1,\dots,C_n \rar[][domA]{\perp_{C_1},\dots,\perp_{C_n}} \dar[swap]{F}
& C_1,\dots,C_n \dar{F} \\
C_0^{\bullet} \rar[][swap,codA]{I_{C_0}^{\bullet}}
&C_0^{\bullet}
\twocellA{I_{0F}}
\end{tikzcd}
\]
The horizontal compositions and units must respect the cyclic action, such that the equations hold:
\[
\sigma(\theta\otimes_i\phi)=(\sigma\theta)\otimes_{i+1}(\sigma\phi)
\qquad
\sigma(I_{iF})=I_{(i+1)\sigma F}
\]
We require the existence of the families of globular coherence 2-cells $m,c,j,z$, satisfying the same conditions as in a cyclic 2-fold double category. Notably, we only require naturality of $z$ with respect to unary 2-cells. It is unclear whether there is any sensible compatibility between $z$ and multivariable 2-cells that could be asked for, but such a compatibility is not needed for our purposes.
\begin{remark}
The generalization from cyclic double categories to cyclic 2-fold double categories can be thought of as relaxing the condition that $(X^{\bullet}\otimes Y^{\bullet})^{\bullet}=X\otimes Y$, and the similar condition on 2-cells. We add the notation $X\odot Y$ for the left hand side, and the axioms for a cyclic 2-fold double category add coherence conditions relating $X\odot Y$ and $X\otimes Y$, which would be trivial if they were equal.
Similarly, we can discover the structure of a cyclic 2-fold double multicategory by dropping the requirement that $\sigma(\sigma^{-1}\theta\otimes\sigma^{-1}\phi)=\theta\otimes\phi$ for $\theta$ and $\phi$ two $n$-ary 2-cells. Thus we get a different horizontal composition $\sigma^i(\sigma^{-i}\theta\otimes\sigma^{-i}\phi)$ for each $i\in\{0,\dots,n\}$, which we abbreviate as $\otimes_i$.
\end{remark}
\section{Multimorphisms of Bimonads}
The \cref{Def:Bimonad} of bimonads in a 2-fold double category uses only globular 2-cells, so works unchanged in a cyclic 2-fold double multicategory $\dblcat{M}$. However, using the multicategory structure of $\dblcat{M}$ we will now be able to expand the category of bimonads in $\dblcat{M}$ to a multicategory $\Bimon(\dblcat{M})$, and the cyclic structure of $\dblcat{M}$ will lift to $\Bimon(\dblcat{M})$, making it a cyclic multicategory.
\begin{definition}
Let $\dblcat{M}$ be a cyclic 2-fold double multicategory, let $(X_i,\eta_i,\mu_i,\epsilon_i,\delta_i)$, $i\in\{0,1,2\}$, be bimonads in $\dblcat{M}$, and let $F$ and $\phi$ be as in the diagram
\[
\begin{tikzcd}
C_1,C_2 \rar[][domA]{X_1,X_2} \dar[swap]{F}
& C_1,C_2 \dar{F} \\
C_0 \rar[][codA,swap]{X_0^{\bullet}}
& C_0.
\twocellA{\phi}
\end{tikzcd}
\]
Say that $(F,\phi)$ is a 0-colax morphism of bimonads if the following two equations are satisfied:
\[
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1,C_2 \rar[][domA]{X_1,X_2} \dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codA,domB]{X_0^{\bullet}}
\rar[bend right][codB,swap]{I^{\bullet}}
\& C_0
\twocellA{\phi}
\twocellB{\eta_0^{\bullet}}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1,C_2 \rar[bend left][domA]{X_1,X_2}
\rar[][codA,domB,swap]{\perp,\perp}
\dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codB,swap]{I^{\bullet}}
\& C_0
\twocellA{\epsilon_1,\epsilon_2}
\twocellB{I_{0F}}
\end{tikzcd}
\]
\[
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1,C_2 \rar[][domA]{X_1,X_2} \dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codA,domB]{X_0^{\bullet}}
\rar[bend right][codB,swap]{(X_0\otimes X_0)^{\bullet}}
\& C_0
\twocellA{\phi}
\twocellB{\mu_0^{\bullet}}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50,column sep=5em]
C_1,C_2 \rar[bend left][domA]{X_1,X_2}
\rar[][codA,domB,swap]{X_1\odot X_1,X_2\odot X_2}
\dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codB,swap]{(X_0\otimes X_0)^{\bullet}}
\& C_0.
\twocellA{\delta_1,\delta_2}
\twocellB{\phi\otimes_0\phi}
\end{tikzcd}
\]
Likewise, $(F,\phi)$ is a 1-colax morphism of bimonads if the two equations
\[
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1,C_2 \rar[bend left][domA]{I,X_2}
\rar[][codA,domB,swap]{X_1,X_2}
\dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codB,swap]{X_0^{\bullet}}
\& C_0
\twocellA{\eta_1,\id}
\twocellB{\phi}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1,C_2 \rar[bend left][domA]{I,X_2}
\rar[][codA,domB,swap]{I,\perp}
\dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codB,domC]{\perp^{\bullet}}
\rar[bend right][codC,swap]{X_0^{\bullet}}
\& C_0
\twocellA{\id,\epsilon_2}
\twocellB{I_{1F}}
\twocellC{\epsilon_0^{\bullet}}
\end{tikzcd}
\]
\[
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1,C_2 \rar[bend left][domA]{X_1\otimes X_1,X_2}
\rar[][codA,domB,swap]{X_1,X_2}
\dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codB,swap]{X_0^{\bullet}}
\& C_0
\twocellA{\mu_1,\id}
\twocellB{\phi}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50,column sep=5em]
C_1,C_2 \rar[bend left][domA]{X_1\otimes X_1,X_2}
\rar[][codA,domB,swap]{X_1\otimes X_1,X_2\odot X_2}
\dar[swap]{F}
\& C_1,C_2 \dar{F} \\
C_0 \rar[][codB,domC]{(X_0\odot X_0)^{\bullet}}
\rar[bend right][codC,swap]{X_0^{\bullet}}
\& C_0
\twocellA{\id,\delta_2}
\twocellB{\phi\otimes_1\phi}
\twocellC{\delta_0^{\bullet}}
\end{tikzcd}
\]
hold, and $(F,\phi)$ is 2-colax if the analogous two equations hold. We will call $(F,\phi)$ a colax (multi)morphism of bimonads if it is $i$-colax for all $i\in\{0,1,2\}$.
The definition of colax multimorphisms with arity $n$ should be clear from the $n=2$ case.
\end{definition}
It is straightforward to see that multimorphisms of bimonads compose multicategorically, so we have the multicategory $\Bimon(\dblcat{M})$ of bimonads in $\dblcat{M}$. Furthermore, the definition of colax multimorphism is clearly symmetric with respect to the cyclic action, so that $\Bimon(\dblcat{M})$ inherits a cyclic action.
\begin{definition}
Let $\dblcat{M}$ be a cyclic 2-fold double multicategory. The cyclic multicategory $\Bimon(\dblcat{M})$ has as objects bimonads in $\dblcat{M}$, and has colax morphisms as (multi)morphisms.
\end{definition}
\section{The Cyclic 2-Fold Double Multicategory of Functorial Factorizations}
In this section, given a cyclic double multicategory $\dblcat{M}$, we will construct a cyclic 2-fold double multicategory $\FF(\dblcat{M})$ of functorial factorizations in $\dblcat{M}$.
The objects and vertical multicategory of $\FF(\dblcat{M})$ are those of $\dblcat{M}$. The horizontal 1-cells of $\FF(\dblcat{M})$ are functorial factorizations in $\dblcat{M}$. As with bimonads, the definition of functorial factorization given in \cref{Ch:FuncFact} involves only globular 2-cells, so no modification is necessary to define functorial factorizations in $\dblcat{M}$.
Also as with bimonads, we will give an explicit definition of 2-ary 2-cell and let the reader extend the (easy) pattern to $n$-ary 2-cells for arbitrary $n$.
\begin{definition}
Let $(E_i,\eta_i,\epsilon_i)$, $i\in\{0,1,2\}$, be functorial factorizations in $\dblcat{M}$ on objects $C_i$. A 2-ary 2-cell in $\FF(\dblcat{M})$
\[
\begin{tikzcd}
C_1,C_2 \rar[tick][domA]{E_1,E_2} \dar[swap]{F}
& C_1,C_2 \dar{F} \\
C_0^{\bullet} \rar[tick][codA,swap]{E_0^{\bullet}}
& C_0^{\bullet}
\twocellA{\theta}
\end{tikzcd}
\]
is given by a 2-cell
\[
\begin{tikzcd}
C_1^2,C_2^2 \rar[tick][domA]{E_1,E_2} \dar[swap]{\hat{F}}
& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{E_0}
& C_0^{\bullet}
\twocellA{\theta}
\end{tikzcd}
\]
in $\dblcat{M}$ satisfying three equations:
\begin{gather}
\begin{tikzcd}[bend angle=50,ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick][domA]{E_1,E_2}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,domB]{E_0^{\bullet}}
\rar[tick,bend right][codB,swap]{\dom^{\bullet}}
\& C_0^{\bullet}
\twocellA{\theta}
\twocellB{\eta_0^{\bullet}}
\end{tikzcd}
=
\begin{tikzcd}[bend angle=50,ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick,bend left][domA]{E_1,E_2}
\rar[tick][codA,domB,swap]{\cod,\cod}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,domC,swap]{\dom^{\bullet}}
\& C_0^{\bullet}
\twocellA{\epsilon_1,\epsilon_2}
\twocellB{\gamma_0}
\end{tikzcd} \label{Eq:FFMulti2CellA}
\\
\begin{tikzcd}[bend angle=50,ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick,bend left][domA]{\dom,E_2}
\rar[tick][codA,domB,swap]{E_1,E_2}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,swap]{E_0^{\bullet}}
\& C_0^{\bullet}
\twocellA{\eta_1,\id}
\twocellB{\theta}
\end{tikzcd}
=
\begin{tikzcd}[bend angle=50,ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick,bend left][domA]{\dom,E_2}
\rar[tick][codA,domB,swap]{\dom,\cod}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,domC]{\cod^{\bullet}}
\rar[tick,bend right][codC,swap]{E_0^{\bullet}}
\& C_0^{\bullet}
\twocellA{\id,\epsilon_2}
\twocellB{\gamma_1}
\twocellC{\epsilon_0^{\bullet}}
\end{tikzcd} \label{Eq:FFMulti2CellB}
\\
\begin{tikzcd}[bend angle=50,ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick,bend left][domA]{E_1,\dom}
\rar[tick][codA,domB,swap]{E_1,E_2}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,swap]{E_0^{\bullet}}
\& C_0^{\bullet}
\twocellA{\id,\eta_2}
\twocellB{\theta}
\end{tikzcd}
=
\begin{tikzcd}[bend angle=50,ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick,bend left][domA]{E_1,\dom}
\rar[tick][codA,domB,swap]{\cod,\dom}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,domC]{\cod^{\bullet}}
\rar[tick,bend right][codC,swap]{E_0^{\bullet}}
\& C_0^{\bullet}
\twocellA{\epsilon_1,\id}
\twocellB{\gamma_2}
\twocellC{\epsilon_0^{\bullet}}
\end{tikzcd} \label{Eq:FFMulti2CellC}
\end{gather}
\end{definition}
The cyclic action on a 2-cell in $\FF(\dblcat{M})$ is simply given by the cyclic action on the underlying 2-cell in $\dblcat{M}$. This is well defined since the definition of 2-cell in $\FF(\dblcat{M})$ is clearly stable under the cyclic action in $\dblcat{M}$.
\begin{proposition}
Continuing the notation of the previous definition, the 2-cell $\theta$ induces 2-cells in $\dblcat{M}$
\[
\begin{tikzcd}
C_1^2,C_2^2 \rar[tick][domA]{L_1,L_2} \dar[swap]{\hat{F}}
& C_1^2,C_2^2 \dar{\hat{F}} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{R_0^{\bullet}}
& C_0^{\bullet 2}
\twocellA{\hat{\theta}^0}
\end{tikzcd}
\quad
\begin{tikzcd}
C_1^2,C_2^2 \rar[tick][domA]{R_1,L_2} \dar[swap]{\hat{F}}
& C_1^2,C_2^2 \dar{\hat{F}} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
& C_0^{\bullet 2}
\twocellA{\hat{\theta}^1}
\end{tikzcd}
\quad
\begin{tikzcd}
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
& C_1^2,C_2^2 \dar{\hat{F}} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
& C_0^{\bullet 2}
\twocellA{\hat{\theta}^2}
\end{tikzcd}
\]
satisfying
\begin{gather*}
\begin{tikzcd}[ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
\& C_1^2,C_2^2 \rar[tick][domB]{\cod,\cod} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
\& C_0^{\bullet 2} \rar[tick][codB,swap]{\dom^{\bullet}}
\& C_0^{\bullet}
\twocellA{\hat{\theta}^2}
\twocellB{\gamma_0}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick,bend left][domA]{E_1,\cod}
\rar[tick][codA,domB,swap]{\cod,\cod}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,swap]{\dom^{\bullet}}
\& C_0^{\bullet}
\twocellA{\epsilon_1,\id}
\twocellB{\gamma_0}
\end{tikzcd}
\\
\begin{tikzcd}[ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
\& C_1^2,C_2^2 \rar[tick][domB]{\dom,\cod} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
\& C_0^{\bullet 2} \rar[tick][codB,swap]{\cod^{\bullet}}
\& C_0^{\bullet}
\twocellA{\hat{\theta}^2}
\twocellB{\gamma_1}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick][domA]{\dom,\cod}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,domB]{\cod^{\bullet}}
\rar[tick,bend right][codB,swap]{E_2^{\bullet}}
\& C_0^{\bullet}
\twocellA{\gamma_1}
\twocellB{\epsilon_0^{\bullet}}
\end{tikzcd}
\\
\begin{tikzcd}[ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
\& C_1^2,C_2^2 \rar[tick][domB]{\cod,\dom} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
\& C_0^{\bullet 2} \rar[tick][codB,swap]{\cod^{\bullet}}
\& C_0^{\bullet}
\twocellA{\hat{\theta}^2}
\twocellB{\gamma_2}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick][domA]{E_1,E_2}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,domB,swap]{E_0^{\bullet}}
\& C_0^{\bullet}
\twocellA{\theta}
\end{tikzcd}
\end{gather*}
and a similar three equations for each of $\hat{\theta}^0$ and $\hat{\theta}^1$.
In general, an $n$-ary 2-cell $\theta$ in $\FF(\dblcat{M})$ induces 2-cells $\hat{\theta}^i$ in $\dblcat{M}$, $i\in\{0,\dots,n\}$.
\end{proposition}
\begin{proof}
We will verify the existence of $\hat{\theta}^2$. The pattern extending to all other cases should be evident.
Using the universal property for arrow objects in a cyclic double multicategory, we only need to check the three equations obtained by composing each side of the equations~\eqref{Eq:ArrowObjectMultiA}--\eqref{Eq:ArrowObjectMultiC} with $\hat{\theta}^2$. Equation~\eqref{Eq:ArrowObjectMultiA} remains unchanged after composition with $\hat{\theta}^2$, equation~\eqref{Eq:ArrowObjectMultiB} becomes~\eqref{Eq:FFMulti2CellA}, and equation~\eqref{Eq:ArrowObjectMultiC} turns into~\eqref{Eq:FFMulti2CellB}.
Note that equation~\eqref{Eq:FFMulti2CellC} proves that $\hat{\theta}^2$ respects the units/counits of $L_0$, $L_1$, $R_2$, i.e. that the unit condition for a 2-colax morphism of bimonads holds, so that all three equations~\eqref{Eq:FFMulti2CellA}--\eqref{Eq:FFMulti2CellC} go into establishing $\hat{\theta}^i$ for each $i$.
\end{proof}
To finish the construction of the cyclic 2-fold double multicategory $\FF(\dblcat{M})$, we still need to define the horizontal composites and units for $n$-ary 2-cells. Given 2-cells
\[
\begin{tikzcd}
C_1^2,C_2^2 \rar[tick][domA]{E_1,E_2} \dar[swap]{\hat{F}}
& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{E_0^{\bullet}}
& C_0^{\bullet}
\twocellA{\theta}
\end{tikzcd}
\qquad\text{and}\qquad
\begin{tikzcd}
C_1^2,C_2^2 \rar[tick][domA]{E'_1,E'_2} \dar[swap]{\hat{F}}
& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{{E'_0}^{\bullet}}
& C_0^{\bullet}
\twocellA{\phi}
\end{tikzcd}
\]
in $\dblcat{M}$ underlying 2-cells in $\FF(\dblcat{M})$ (i.e. satisfying equations~\eqref{Eq:FFMulti2CellA}--\eqref{Eq:FFMulti2CellC}), define
\[
\begin{tikzcd}[column sep=4em]
C_1^2,C_2^2 \rar[tick][domA]{E_{1\odot1'},E_{2\otimes2'}} \dar[swap]{\hat{F}}
& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{E_{0\odot0'}^{\bullet}}
& C_0^{\bullet}
\twocellA{\theta\otimes_2\phi}
\end{tikzcd}
\qquad\text{by}\qquad
\begin{tikzcd}[ampersand replacement=\&]
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
\& C_1^2,C_2^2 \rar[tick][domB]{E'_1,E'_2} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
\& C_0^{\bullet 2} \rar[tick][codB,swap]{{E'_0}^{\bullet}}
\& C_0^{\bullet}
\twocellA{\hat{\theta}^2}
\twocellB{\phi}
\end{tikzcd}
\]
and likewise for the other horizontal composites. Checking that this composite 2-cell satisfies equations~\eqref{Eq:FFMulti2CellA}--\eqref{Eq:FFMulti2CellC} is easy but notationally cumbersome, so we will verify that $\theta\otimes_2\phi$ satisfies~\eqref{Eq:FFMulti2CellB} to convey the idea:
\begin{multline}
\begin{tikzcd}[ampersand replacement=\&,column sep=4em,bend angle=50]
C_1^2,C_2^2 \rar[tick,bend left][domA]{\dom,E_{2\otimes2'}}
\rar[tick][codA,domB,swap]{E_{1\odot1'},E_{2\otimes2'}}
\dar[swap]{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,swap]{E_{0\odot0'}^{\bullet}}
\& C_0^{\bullet}
\twocellA{\eta_{1\odot1'},\id}
\twocellB{\theta\otimes_2\phi}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
\& C_1^2,C_2^2 \rar[tick,bend left][domB]{\dom,E'_2}
\rar[tick][codB,domC,swap]{E'_1,E'_2} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
\& C_0^{\bullet 2} \rar[tick][codC,swap]{{E'_0}^{\bullet}}
\& C_0^{\bullet}
\twocellA{\hat{\theta}^2}
\twocellB{\eta'_1,\id}
\twocellC{\phi}
\end{tikzcd}
\\
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick][domA]{L_1,R_2} \dar[swap]{\hat{F}}
\& C_1^2,C_2^2 \rar[tick,bend left][domB]{\dom,E'_2}
\rar[tick][codB,domC,swap]{\dom,\cod} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codA,swap]{L_0^{\bullet}}
\& C_0^{\bullet 2} \rar[tick][codC,domD]{\cod^{\bullet}}
\rar[tick,bend right][codD,swap]{{E'_0}^{\bullet}}
\& C_0^{\bullet}
\twocellA{\hat{\theta}^2}
\twocellB{\id,\epsilon'_2}
\twocellC{\gamma_1}
\twocellD{{\epsilon'_0}^{\bullet}}
\end{tikzcd}
\\
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick][]{L_1,R_2} \dar[swap]{\hat{F}}
\& |[alias=domA]| C_1^2,C_2^2 \rar[tick,bend left][domB]{\dom,E'_2}
\rar[tick][codB,swap]{\dom,\cod}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][domC]{\id}
\rar[tick,bend right][codC,swap]{L_0^{\bullet}}
\& |[alias=codA]| C_0^{\bullet 2} \rar[tick][domD]{\cod^{\bullet}}
\rar[tick,bend right][codD,swap]{{E'_0}^{\bullet}}
\& C_0^{\bullet}
\twocellA{\gamma_1}
\twocellB{\id,\epsilon'_2}
\twocellC{\vec{\epsilon}_0^{\bullet}}
\twocellD{{\epsilon'_0}^{\bullet}}
\end{tikzcd}
=
\begin{tikzcd}[ampersand replacement=\&,bend angle=50]
C_1^2,C_2^2 \rar[tick,bend left][domA]{\dom,E_{2\otimes2'}}
\rar[tick][codA,domB,swap]{\dom,\cod} \dar{\hat{F}}
\& C_1,C_2 \dar{F} \\
C_0^{\bullet 2} \rar[tick][codB,domC]{\cod^{\bullet}}
\rar[tick,bend right][codC,swap]{E_{0\odot0'}^{\bullet}}
\& C_0^{\bullet}
\twocellA{\id,\epsilon'_{2\otimes2'}}
\twocellB{\gamma_1}
\twocellC{\epsilon_{0\odot0'}^{\bullet}}
\end{tikzcd}
\end{multline}
Finally, given a $n$-ary vertical 1-cell $F$, the unit 2-cells $I_{iF}$ are simply given by $\gamma_i$, which are easily verified to define 2-cells in $\FF(\dblcat{M})$.