-
Notifications
You must be signed in to change notification settings - Fork 0
/
awfs.tex
252 lines (237 loc) · 12.2 KB
/
awfs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
% -*- root: thesis.tex -*-
\chapter{ALGEBRAIC WEAK FACTORIZATION SYSTEMS}\label{Ch:Awfs}
For this chapter, let $\mathbb{D}=\Sq(\mathcal{D})$ be the double category of squares in a 2-category $\mathcal{D}$. We will show that bimonoids in $\FFD$ are precisely algebraic weak factorization systems, and more generally that the morphisms in $\Bimon(\FFD)$ are given by (co)lax morphisms of algebraic weak factorization systems.
Suppose that $E=(E,\eta,\epsilon)$ is a functorial factorization on a category $\cat{C}$, and consider a monoid structure on $E$. As $I_C$ is initial, the unit of the monoid is forced, and is simply $\eta$. The multiplication is given by a natural transformation $\mu\colon ER\Rightarrow E$ satisfying equations~\eqref{Eq:FF2CellA} and~\eqref{Eq:FF2CellB}, which now take the form $\epsilon\circ\mu = \epsilon R$ and $\mu\circ(\eta\cdot\vec{\eta})=\eta$.
The unit axioms for the monoid give the equations $\mu\circ E\vec{\eta}=\id_E=\mu\circ\eta R$, which together imply the equation $\mu\circ(\eta\cdot\vec{\eta})=\eta$ above. And finally, writing $\vec{\mu}=\mu^R\colon R^2\to R$ for the natural transformation induced by the 2-cell $\mu$, the associativity axiom gives the equation $\mu\circ E\vec{\mu}=\mu\circ\mu R$.
\begin{proposition}
A monoid structure on an object $(E,\eta,\epsilon)$ in $\FFD$ is given by a natural transformation $\mu\colon ER\Rightarrow E$, satisfying equations
\begin{equation}
\epsilon\circ\mu=\epsilon R \qquad
\mu\circ E\vec{\eta}=\id_E=\mu\circ\eta R \qquad
\mu\circ E\vec{\mu}=\mu\circ\mu R.
\end{equation}
This determines a monad $\mathbb{R}=(R,\vec{\eta},\vec{\mu})$, such that $\dom\vec{\mu}=\mu$ and $\cod\vec{\mu}=\id_{\cod}$.
Similarly, a comonoid structure on $(E,\eta,\epsilon)$ is given by a natural transformation $\delta\colon E\Rightarrow EL$, satisfying equations
\begin{equation}
\delta\circ\eta=\eta L \qquad
E\vec{\epsilon}\circ\delta=\id_E=\epsilon L\circ\delta \qquad
E\vec{\delta}\circ\delta=\delta L\circ\delta,
\end{equation}
which determines a comonad $\mathbb{L}=(L,\vec{\epsilon},\vec{\delta})$, such that $\dom\vec{\delta}=\id_{\dom}$ and $\cod\vec{\delta}=\delta$.
\end{proposition}
Hence a functorial factorization which simultaineously has a monoid structure and a comonoid structure in $\FFD$ is precisely an algebraic weak factorization system, missing only the second bullet of \cref{Def:Awfs}: the distributive law condition. This is not surprising, as it is the only condition requiring a compatability between the monad and comonad structures. We will see that a bialgebra in $\FFD$ adds precisely this compatibility.
\begin{proposition}
A bimonoid structure on a horizontal morphism $(E,\eta,\epsilon)\colon C\to C$ in $\FFD$ is precisely an algebraic weak factorization system on $C$ with underlying functorial factorization system $(E,\eta,\epsilon)$.
\end{proposition}
\begin{proof}
We have already shown how the monoid an comonoid structures give rise to the monod and comonad of the awfs. All that remains is to show that the equations~\eqref{Eq:Bimonoid} amount to just the distributive law, i.e. the equation
\begin{equation}\label{Eq:AwfsDistributiveLaw}
\begin{tikzcd}[row sep=tiny, bend angle=30, baseline=(B.base)]
& C^2 \drar{L} \ar[bend left]{drr}[domB]{E} &&\\
|[alias=B,alias=domA]| C^2 \urar{R} \drar[swap]{L}
&& |[alias=codA,alias=codB,alias=domC]| C^2 \rar{E} & C \\
& C^2 \urar[swap]{R} \ar[bend right]{urr}[codC,swap]{E} &&
\twocellA{\Delta}
\twocellB[pos=.4]{\delta}
\twocellC[pos=.55]{\mu}
\end{tikzcd}
=
\begin{tikzcd}[row sep=2ex, column sep=small, bend angle=25, baseline=(B.base)]
& |[alias=domA]| C^2 \drar[bend left]{E} & \\
|[alias=B]| C^2 \urar[bend left]{R}
\ar{rr}[codA,domB,description]{E}
\drar[bend right][swap]{L}
&& C. \\
& |[alias=codB]| C^2 \urar[bend right][swap]{E} &
\twocellA{\mu}
\twocellB[pos=.45]{\delta}
\end{tikzcd}
\end{equation}
First of all, notice that the first three equations of~\eqref{Eq:Bimonoid} follow trivially from the initiality of $I_C$ and the terminality of $\perp_C$ in $\FFD$, hence they do not impose any further conditions.
The fourth equation here takes the form
\[
\begin{tikzcd}
C^2 \rar[][domA]{R} \dar[equal]
& C^2 \ar{rr}[domB]{E} \dar[equal]
&& C \dar[equal] \\
C^2 \rar[][codA,swap]{R_{E\odot E}} \dar[equal]
& |[alias=domC]| C^2 \rar{L}
& |[alias=codB]| C^2 \rar[][domD]{E} \dar[equal]
& C \dar[equal] \\
C^2 \rar[][domE]{L_{E\otimes E}} \dar[equal]
& |[alias=codC]| C^2 \rar[swap]{R} \dar[equal]
& |[alias=domF]| C^2 \rar[][codD,swap]{E}
& C \dar[equal] \\
C^2 \rar[][codE,swap]{L} & C^2 \ar{rr}[codF,swap]{E} && C
\twocellA{\delta^R}
\twocellB{\delta}
\twocellC{w}
\twocellD{\id_E}
\twocellE{\mu^L}
\twocellF{\mu}
\end{tikzcd}
=
\begin{tikzcd}
C^2 \rar{R} \dar[equal]
& |[alias=domA]| C^2 \rar{E}
& C \dar[equal] \\
C^2 \ar{rr}[codA,domB]{E} \dar[equal]
&& C \dar[equal] \\
C^2 \rar[swap]{L}
& |[alias=codB]| C^2 \rar[swap]{E}
& C,
\twocellA{\mu}
\twocellB{\delta}
\end{tikzcd}
\]
and so to prove~\eqref{Eq:AwfsDistributiveLaw}, it suffices to show that
\[
\begin{tikzcd}[row sep=tiny, baseline=(B.base)]
{} & C^2 \drar[bend left=20]{L} & \\
|[alias=B,alias=domB]| C^2 \urar[bend left=60][domA]{R}
\urar[][codA,sloped,swap,pos=0.2,inner sep=.2ex]{R_{E\odot E}}
\drar[][domC,sloped,pos=0.2,inner sep=.2ex]{L_{E\otimes E}}
\drar[bend right=60][codC,swap]{L}
&& |[alias=codB]| C^2 \\
{} & C^2 \urar[bend right=20][swap]{R} &
\twocellA{\delta^R}
\twocellB{w}
\twocellC{\mu^L}
\end{tikzcd}
=
\begin{tikzcd}[row sep=0ex, column sep=4ex, bend angle=15, baseline=(B.base)]
{} & C^2 \drar[bend left]{L} & \\
|[alias=B,alias=domA]| C^2 \urar[bend left]{R}
\drar[bend right][swap]{L}
&& |[alias=codA]| C^2. \\
{} & C^2 \urar[bend right][swap]{R} &
\twocellA{\Delta}
\end{tikzcd}
\]
We can check this using the universal property of $C^2$ by composing with $\dom$ and $\cod$. First, use~\eqref{Eq:DomW} and~\eqref{Eq:CodW} to check that
\begin{gather*}
\begin{tikzcd}[row sep=tiny, baseline=(B.base),ampersand replacement=\&]
{} \& C^2 \drar[bend left=20]{L} \&\& \\
|[alias=B,alias=domB]| C^2 \urar[bend left=60][domA]{R}
\urar[][codA,sloped,swap,pos=0.2,inner sep=.2ex]{R_{E\odot E}}
\drar[][domC,sloped,pos=0.2,inner sep=.2ex]{L_{E\otimes E}}
\drar[bend right=60][codC,swap]{L}
\&\& |[alias=codB]| C^2 \rar{\dom} \& C \\
{} \& C^2 \urar[bend right=20][swap]{R} \&\&
\twocellA{\delta^R}
\twocellB{w}
\twocellC{\mu^L}
\end{tikzcd}
=
\begin{tikzcd}[baseline=(B.base),ampersand replacement=\&]
C^2 \ar[bend left=55]{rr}[domA]{E}
\rar[bend left=30][domB]{L}
\rar[bend right=30][codB,domC,swap,inner sep=0.5pt]{L_{E\otimes E}}
\rar[bend right=85,looseness=2][codC,swap]{L}
\& |[alias=codA]| C^2 \rar[swap]{E} \& C
\twocellA[pos=.45]{\delta}
\twocellB{i^L}
\twocellC[pos=.65]{\mu^L}
\end{tikzcd}
\\
\begin{tikzcd}[row sep=tiny, baseline=(B.base),ampersand replacement=\&]
{} \& |[alias=domB]| C^2 \drar[bend left=20]{L} \&\& \\
|[alias=B]| C^2 \urar[bend left=60][domA]{R}
\urar[][codA,sloped,swap,pos=0.2,inner sep=.2ex]{R_{E\odot E}}
\drar[][domC,sloped,pos=0.2,inner sep=.2ex]{L_{E\otimes E}}
\drar[bend right=60][codC,swap]{L}
\&\& C^2 \rar{\cod} \& C \\
{} \& |[alias=codB]| C^2 \urar[bend right=20][swap]{R} \&\&
\twocellA{\delta^R}
\twocellB{w}
\twocellC{\mu^L}
\end{tikzcd}
=
\begin{tikzcd}[baseline=(B.base),ampersand replacement=\&]
C^2 \rar[bend left=85,looseness=2][domA]{R}
\rar[bend left=30][codA,domB,inner sep=0.5pt]{R_{E\odot E}}
\rar[bend right=30][codB,swap]{R}
\ar[bend right=55]{rr}[codC,swap]{E}
\& |[alias=domC]| C^2 \rar{E} \& C.
\twocellA[pos=.4]{\delta^R}
\twocellB{p^R}
\twocellC[pos=.55]{\mu}
\end{tikzcd}
\end{gather*}
Then use the definitions of $i$ and $p$ to check that $\mu\circ i=\mu\circ\eta R=\id_E$ and $p\circ\delta=\epsilon L\circ\delta=\id_E$, so that the first row above just equals $\delta$, and the second row equals $\mu$. Since $\Delta$ also (by definition) satisfies $\dom\Delta=\delta$ and $\cod\Delta=\mu$, we are done.
\end{proof}
The appropriate notion of morphism between awfs, analagous to left and right Quillen functors and Quillen adjunctions, is (to our knowledge) first given in~\cite{riehl:nwfs-model}.
\begin{definition}
Suppose that $(E_1,\eta_1,\mu_1,\epsilon_1,\delta_1)$ and $(E_2,\eta_2,\mu_2,\epsilon_2,\delta_2)$ are awfs on $\cat{C}$ and $\cat{D}$ respectively.
\begin{itemize}
\item A \emph{lax morphism of awfs} $(G,\rho)\colon E_1\to E_2$ consists of a functor $G\colon\cat{C}\to\cat{D}$ and a natural transformation $\rho\colon E_2\hat{G}\Rightarrow GE_1$, such that $(1,\rho)\colon L_2\hat{G}\Rightarrow GL_1$ is a lax morphism of comonads and $(\rho,1)\colon R_2\hat{G}\Rightarrow GR_1$ is a lax morphism of monads.
\item A \emph{colax morphism of awfs} $(F,\lambda)\colon E_1\to E_2$ consists of a functor $F\colon\cat{C}\to\cat{D}$ and a natural transformation $\lambda\colon FE_1\Rightarrow E_2\hat{F}$, such that $(1,\lambda)\colon FL_1\Rightarrow L_2\hat{F}$ is a colax morphism of comonads and $(\lambda,1)\colon FR_1\Rightarrow R_2\hat{F}$ is a colax morphism of monads.
\end{itemize}
\end{definition}
Notice that a lax morphism of awfs induces a lift of the functor $\hat{G}$ to a functor $\RAlg[1]\to\RAlg[2]$. In that sense, $G$ ``preserves the right class,'' so is analagous to a right Quillen functor. Similarly, a colax morphism of awfs induces a lift of $\hat{F}$ to $\LCoalg[1]\to\LCoalg[2]$, so is analagous to a left Quillen functor.
\begin{proposition}
Morphisms in $\Bimon(\FFD)$ are precisely the colax morphisms of awfs.
% A colax morphism
% \[
% (E_2,\eta_2,\mu_2,\epsilon_2,\delta_2)^{\bullet} \to (E_1,\eta_1,\mu_1,\epsilon_1,\delta_1)^{\bullet}
% \]
% is equivalent to a lax morphism of awfs
% \[
% (E_1,\eta_1,\mu_1,\epsilon_1,\delta_1) \to (E_2,\eta_2,\mu_2,\epsilon_2,\delta_2)
% \]
\end{proposition}
\begin{proof}
As above, let $(E_1,\eta_1,\mu_1,\epsilon_1,\delta_1)$ and $(E_2,\eta_2,\mu_2,\epsilon_2,\delta_2)$ be awfs on $C$ and $D$ respectively. A morphism of bimonoids is given by a 2-cell
\[
\begin{tikzcd}[column sep=large]
C \rar[tick][domA]{(E_1,\eta_1,\epsilon_1)} \dar[swap]{F}
& C \dar{F} \\
D \rar[tick][codA,swap]{(E_2,\eta_2,\epsilon_2)}
& D
\twocellA{\lambda}
\end{tikzcd}
\]
which commutes with the monoid and comonoid structures. It is straightforward to check that this implies the natural transformations
\[
\begin{tikzcd}
C^2 \rar[][domA]{L_1} \dar[swap]{\hat{F}}
& C^2 \dar{\hat{F}} \\
D^2 \rar[][codA,swap]{L_2}
& D^2
\twocellA{\lambda^L}
\end{tikzcd}
\qquad
\begin{tikzcd}
C^2 \rar[][domA]{R_1} \dar[swap]{\hat{F}}
& C^2 \dar{\hat{F}} \\
D^2 \rar[][codA,swap]{R_2}
& D^2
\twocellA{\lambda^R}
\end{tikzcd}
\]
are colax morphisms of comonads and monads respectively.
\end{proof}
Now take $\dblcat{D}$ to be $\LAdj(\twocat{D})$ instead of $\Sq(\twocat{D})$. All of the above works without change, as the only difference is that the vertical 1-cells are now left adjoints equipped with the unit and counit of the adjunction.
By \cref{Prop:BimonCyclic}, there is a cyclic action on $\Cat{AWFS}(\twocat{D})=\Bimon(\FFD)$ induced by the cyclic action on $\FFD$. This action is given on awfs by
\[
(E,\eta,\mu,\epsilon,\delta)^{\bullet} = (E^{\bullet},\epsilon^{\bullet},\delta^{\bullet},\eta^{\bullet},\mu^{\bullet})
\]
swapping the monad and comonad structures. If $F\dashv G$ is an adjunction in $\twocat{D}$ and $\lambda$ is a 2-cell in $\FFD$ as above, then $\sigma \lambda$ is a 2-cell
\[
\begin{tikzcd}[column sep=large]
\op{D} \rar[tick][domA]{(E_2,\eta_2,\epsilon_2)^{\bullet}} \dar[swap]{\op{G}}
& \op{D} \dar{\op{G}} \\
\op{C} \rar[tick][codA,swap]{(E_1,\eta_1,\epsilon_1)^{\bullet}}
& \op{C}
\twocellA{(\sigma\lambda)^{\bullet}}
\end{tikzcd}
\]
given by a 2-cell in $\twocat{D}$
\[
\begin{tikzcd}
D^2 \rar[domA]{E_2} \dar[][swap]{G} & D \dar{\hat{G}} \\
C^2 \rar[][codA,swap]{E_1} & C.
\twocellalt{A}{\Uparrow\sigma\lambda}
\end{tikzcd}
\]
If $(F,\lambda)$ is a colax morphism of awfs, it is not hard to show that $(G,(\sigma\lambda)^{\bullet})$ is a lax morphism of awfs. In this way, the cyclic action allows us to capture both types of morphism of awfs in the same structure.