forked from wkentaro/labelme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
labelme2voc.py
executable file
·139 lines (123 loc) · 4.8 KB
/
labelme2voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
from __future__ import print_function
import argparse
import glob
import json
import os
import os.path as osp
import sys
import imgviz
import numpy as np
import PIL.Image
import labelme
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('input_dir', help='input annotated directory')
parser.add_argument('output_dir', help='output dataset directory')
parser.add_argument('--labels', help='labels file', required=True)
parser.add_argument(
'--noviz', help='no visualization', action='store_true'
)
args = parser.parse_args()
if osp.exists(args.output_dir):
print('Output directory already exists:', args.output_dir)
sys.exit(1)
os.makedirs(args.output_dir)
os.makedirs(osp.join(args.output_dir, 'JPEGImages'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClass'))
os.makedirs(osp.join(args.output_dir, 'SegmentationClassPNG'))
if not args.noviz:
os.makedirs(
osp.join(args.output_dir, 'SegmentationClassVisualization')
)
os.makedirs(osp.join(args.output_dir, 'SegmentationObject'))
os.makedirs(osp.join(args.output_dir, 'SegmentationObjectPNG'))
if not args.noviz:
os.makedirs(
osp.join(args.output_dir, 'SegmentationObjectVisualization')
)
print('Creating dataset:', args.output_dir)
class_names = []
class_name_to_id = {}
for i, line in enumerate(open(args.labels).readlines()):
class_id = i - 1 # starts with -1
class_name = line.strip()
class_name_to_id[class_name] = class_id
if class_id == -1:
assert class_name == '__ignore__'
continue
elif class_id == 0:
assert class_name == '_background_'
class_names.append(class_name)
class_names = tuple(class_names)
print('class_names:', class_names)
out_class_names_file = osp.join(args.output_dir, 'class_names.txt')
with open(out_class_names_file, 'w') as f:
f.writelines('\n'.join(class_names))
print('Saved class_names:', out_class_names_file)
for label_file in glob.glob(osp.join(args.input_dir, '*.json')):
print('Generating dataset from:', label_file)
with open(label_file) as f:
base = osp.splitext(osp.basename(label_file))[0]
out_img_file = osp.join(
args.output_dir, 'JPEGImages', base + '.jpg')
out_cls_file = osp.join(
args.output_dir, 'SegmentationClass', base + '.npy')
out_clsp_file = osp.join(
args.output_dir, 'SegmentationClassPNG', base + '.png')
if not args.noviz:
out_clsv_file = osp.join(
args.output_dir,
'SegmentationClassVisualization',
base + '.jpg',
)
out_ins_file = osp.join(
args.output_dir, 'SegmentationObject', base + '.npy')
out_insp_file = osp.join(
args.output_dir, 'SegmentationObjectPNG', base + '.png')
if not args.noviz:
out_insv_file = osp.join(
args.output_dir,
'SegmentationObjectVisualization',
base + '.jpg',
)
data = json.load(f)
img_file = osp.join(osp.dirname(label_file), data['imagePath'])
img = np.asarray(PIL.Image.open(img_file))
PIL.Image.fromarray(img).save(out_img_file)
cls, ins = labelme.utils.shapes_to_label(
img_shape=img.shape,
shapes=data['shapes'],
label_name_to_value=class_name_to_id,
)
ins[cls == -1] = 0 # ignore it.
# class label
labelme.utils.lblsave(out_clsp_file, cls)
np.save(out_cls_file, cls)
if not args.noviz:
clsv = imgviz.label2rgb(
label=cls,
img=imgviz.rgb2gray(img),
label_names=class_names,
font_size=15,
loc='rb',
)
imgviz.io.imsave(out_clsv_file, clsv)
# instance label
labelme.utils.lblsave(out_insp_file, ins)
np.save(out_ins_file, ins)
if not args.noviz:
instance_ids = np.unique(ins)
instance_names = [str(i) for i in range(max(instance_ids) + 1)]
insv = imgviz.label2rgb(
label=ins,
img=imgviz.rgb2gray(img),
label_names=instance_names,
font_size=15,
loc='rb',
)
imgviz.io.imsave(out_insv_file, insv)
if __name__ == '__main__':
main()