-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlagrange.m
60 lines (52 loc) · 2.69 KB
/
lagrange.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function basis = lagrange(nodes)
global precision;
% extract number of nodes
N = length(nodes);
% Import colors from custom-defined colormap
color = cmap(N,1);
% construct all the lagrangian monomial iteratively and extract the lagrangian basis of the (N-1)-th order
basis = hpf(zeros(N,N));
for j=1:N
% of all the nodes in [a,b] remove the one associated to the j-th basis function (in which its value has to be 1)
lagrangian_nodes = nodes([1:j-1,j+1:N]);
% on the j-th row store the N coefficients of the j-th lagrangian polynomial of degree (N-1)
basis(j,:) = hpf(extract_basis(lagrangian_nodes,nodes(j)), precision); % the first row obviously stores the coefficient of the power x^0
end
global print_polynomials;
global print_quadrature;
% check consinstency in the print options selection
if print_quadrature==1 && print_polynomials==0
error('In order to print the Lagrangian interpolating polynomial (print_quadrature=1) you must also enable the option to print Lagrangian basis functions (print_polynomials=1).');
end
if print_polynomials==1
% initialise the monomial matrix in [a,b]
x = linspace(nodes(1), nodes(N), 1000);
monomials = zeros(length(x),N);
% fill-in the rows of the matrix by the value of the monomial power
for n=1:N
% along the n-th column store the value of the vector x = (0.000, 0.100, 0.200, ...) to the power (n-1) to compute x^0, x^1, x^2 ...
monomials(:,n) = x.^(n-1);
end
if print_quadrature==1
global polynomials;
end
polynomials = zeros(length(x),N);
figure('units','normalized','outerposition',[0 0 1 1])
% to represent the polynomial basis compute the scalar product between the coefficients in the basis matrix and the values of (x^0, x^1, x^2, ...) associated to each x in [a,b]
for n=1:N
for j=1:length(x)
polynomials(j,n) = doubledot(basis(n,:), monomials(j,:));
end
hold on
grid on
p(n)=plot(x, polynomials(:,n), 'LineWidth', 3, 'color', color(n,:), 'DisplayName',sprintf('$ l_{%d}(x) $', n-1));
end
for n=1:N
plot(nodes(n), 0, 'o','MarkerSize',10, 'MarkerEdgeColor', 'k', 'MarkerFaceColor', color(n,:));
end
leg = legend(p,'Interpreter', 'latex','Orientation','horizontal','NumColumns',4);
set(leg, 'Location', 'bestoutside', 'FontSize', 15);
str = sprintf('Lagrangian basis functions: $l_{j}(x)$ are $P_{%d}$ polynomials',N-1);
title(str, 'interpreter', 'latex', 'FontSize', 14)
end
end