English | 简体中文
PP-YOLO is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than YOLOv4,PaddlePaddle 1.8.4(available on pip now) or Daily Version is required to run this PP-YOLO。
PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
PP-YOLO improved performance and speed of YOLOv3 with following methods:
- Better backbone: ResNet50vd-DCN
- Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU
- Drop Block
- Exponential Moving Average
- IoU Loss
- Grid Sensitive
- Matrix NMS
- CoordConv
- Spatial Pyramid Pooling
- Better ImageNet pretrain weights
Model | GPU number | images/GPU | backbone | input shape | Box APval | Box APtest | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv4(AlexyAB) | - | - | CSPDarknet | 608 | - | 43.5 | 62 | 105.5 | model | config |
YOLOv4(AlexyAB) | - | - | CSPDarknet | 512 | - | 43.0 | 83 | 138.4 | model | config |
YOLOv4(AlexyAB) | - | - | CSPDarknet | 416 | - | 41.2 | 96 | 164.0 | model | config |
YOLOv4(AlexyAB) | - | - | CSPDarknet | 320 | - | 38.0 | 123 | 199.0 | model | config |
PP-YOLO | 8 | 24 | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | model | config |
PP-YOLO | 8 | 24 | ResNet50vd | 512 | 43.9 | 44.4 | 89.9 | 188.4 | model | config |
PP-YOLO | 8 | 24 | ResNet50vd | 416 | 42.1 | 42.5 | 109.1 | 215.4 | model | config |
PP-YOLO | 8 | 24 | ResNet50vd | 320 | 38.9 | 39.3 | 132.2 | 242.2 | model | config |
PP-YOLO_2x | 8 | 24 | ResNet50vd | 608 | 45.3 | 45.9 | 72.9 | 155.6 | model | config |
PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | model | config |
PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | model | config |
PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | model | config |
Notes:
- PP-YOLO is trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,Box APtest is evaluation results of
mAP(IoU=0.5:0.95)
. - PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according FAQ.
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by
tools/export_model.py
and benchmarked by runningdepoly/python/infer.py
with--run_benchmark
. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as YOLOv4(AlexyAB) in testing method. - TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(
yolo_box
) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as YOLOv4(AlexyAB) too) - YOLOv4(AlexyAB) performance and inference speed is copy from single Tesla V100 testing results in YOLOv4 github repo, Tesla V100 TensorRT FP16 inference speed is testing with tkDNN configuration and TensorRT 5.1.2.2 on single Tesla V100 based on AlexyAB/darknet repo.
- Download and configuration of YOLOv4(AlexyAB) is reproduced model of YOLOv4 in PaddleDetection, whose evaluation performance is same as YOLOv4(AlexyAB), and finetune training is supported in PaddleDetection currently, reproducing by training from backbone pretrain weights is on working, see PaddleDetection YOLOv4 for details.
Model | GPU number | images/GPU | backbone | input shape | Box AP50val | Box AP50test | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config |
---|---|---|---|---|---|---|---|---|---|---|
PP-YOLO_r18vd | 4 | 32 | ResNet18vd | 416 | 47.0 | 47.7 | 401.6 | 724.6 | model | config |
PP-YOLO_r18vd | 4 | 32 | ResNet18vd | 320 | 43.7 | 44.4 | 478.5 | 791.3 | model | config |
- PP-YOLO_r18vd is trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,Box AP50val is evaluation results of
mAP(IoU=0.5)
. - PP-YOLO_r18vd used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according FAQ.
- PP-YOLO_r18vd inference speeding testing environment and configuration is same as PP-YOLO above.
Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection root directory as default), use --eval
to enable alternate evaluation during training.
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python tools/train.py -c configs/ppyolo/ppyolo.yml --eval
optional: Run tools/anchor_cluster.py
to get anchors suitable for your dataset, and modify the anchor setting in configs/ppyolo/ppyolo.yml
.
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo.yml -n 9 -s 608 -m v2 -i 1000
Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams
# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo.yml -o weights=output/ppyolo/best_model
For evaluation on COCO test-dev2017 dataset, configs/ppyolo/ppyolo_test.yml
should be used, please download COCO test-dev2017 dataset from COCO dataset download and decompress to pathes configured by EvalReader.dataset
in configs/ppyolo/ppyolo_test.yml
and run evaluation by following command:
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams
# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo/best_model
Evaluation results will be saved in bbox.json
, compress it into a zip
package and upload to COCO dataset evaluation to evaluate.
NOTE: configs/ppyolo/ppyolo_test.yml
is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating.
Inference images in single GPU with following commands, use --infer_img
to inference a single image and --infer_dir
to inference all images in the directory.
# inference single image
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439_640x640.jpg
# inference all images in the directory
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_dir=demo
For inference deployment or benchmard, model exported with tools/export_model.py
should be used and perform inference with Paddle inference library with following commands:
# export model, model will be save in output/ppyolo as default
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams
# inference with Paddle Inference library
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True
Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with --exclude_nms
to prunce NMS for benchmark testing from mode with following commands:
# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default
python tools/export_model.py -c configs/ppyolo/ppyolo.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --exclude_nms
# FP32 benchmark
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True
# TensorRT FP16 benchmark
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output/ppyolo --image_file=demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16
- more PP-YOLO tiny model
- PP-YOLO model with more backbones
Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.
NO. | Model | Box APval | Box APtest | Params(M) | FLOPs(G) | V100 FP32 FPS |
---|---|---|---|---|---|---|
A | YOLOv3-DarkNet53 | 38.9 | - | 59.13 | 65.52 | 58.2 |
B | YOLOv3-ResNet50vd-DCN | 39.1 | - | 43.89 | 44.71 | 79.2 |
C | B + LB + EMA + DropBlock | 41.4 | - | 43.89 | 44.71 | 79.2 |
D | C + IoU Loss | 41.9 | - | 43.89 | 44.71 | 79.2 |
E | D + IoU Aware | 42.5 | - | 43.90 | 44.71 | 74.9 |
F | E + Grid Sensitive | 42.8 | - | 43.90 | 44.71 | 74.8 |
G | F + Matrix NMS | 43.5 | - | 43.90 | 44.71 | 74.8 |
H | G + CoordConv | 44.0 | - | 43.93 | 44.76 | 74.1 |
I | H + SPP | 44.3 | 45.2 | 44.93 | 45.12 | 72.9 |
J | I + Better ImageNet Pretrain | 44.8 | 45.2 | 44.93 | 45.12 | 72.9 |
K | J + 2x Scheduler | 45.3 | 45.9 | 44.93 | 45.12 | 72.9 |
Notes:
- Performance and inference spedd are measure with input shape as 608
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,
Box AP
is evaluation results asmAP(IoU=0.5:0.95)
. - Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
- YOLOv3-DarkNet53 with mAP as 38.9 is optimized YOLOv3 model in PaddleDetection,see Model Zoo for details.