forked from Revenue-Academy/Cambodia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_policy_revenues.py
840 lines (745 loc) · 48.5 KB
/
generate_policy_revenues.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 11 18:28:24 2021
@author: wb305167
"""
import copy
import pandas as pd
import matplotlib.pyplot as plt
import tkinter as tk
from tkinter import ttk
from tkinter import *
import tkinter.font as tkfont
from datetime import datetime
import json
from numpy import inf
#from taxcalc import *
from taxcalc.utils import *
from taxcalc.display_funcs import *
from PIL import Image,ImageTk
def make_float(item):
if isinstance(item, list):
return [float(x) for x in item]
else:
return float(item)
def read_reform_dict(block_selected_dict):
#print('block_selected_dict in read_reform_dict: ',block_selected_dict)
years=[]
for k in block_selected_dict.keys():
if (block_selected_dict[k]['selected_year'] not in years):
years = years + [block_selected_dict[k]['selected_year'][0]]
ref = {}
ref['policy']={}
#print(' years ', years)
for year in years:
policy_dict = {}
for k in block_selected_dict.keys():
#print('block_selected_dict.keys() ', k)
if block_selected_dict[k]['selected_year'][0]==year:
policy_dict['_'+block_selected_dict[k]['selected_item']]=[make_float(block_selected_dict[k]['selected_value'][0])]
ref['policy'][int(year)] = policy_dict
years = [int(x) for x in years]
years.sort()
return years, ref
def concat_dicts(block_selected_dict, elasticity_dict):
years=[]
max = 0
for k in block_selected_dict.keys():
if int(k) > max:
max = int(k)
for i in range(1,len(elasticity_dict)+1):
block_selected_dict[str(max+i)] = elasticity_dict[str(i)]
#ref = {}
return block_selected_dict
def write_file(df, text_data, filename, window=None, footer_row_num=None):
df.to_csv(filename+'.csv', mode='w')
# a = open(filename+'.csv','w')
# a.write("\n")
# a.write("\n")
# a.close
with open(filename+'.txt','w') as f:
f.write(text_data)
f.close
if (window is not None) and (footer_row_num is not None):
footer = ["footer", "*Data saved in file "+ filename]
display_table(window, data=footer, footer=footer_row_num+2)
def weighted_total_tax(calc, tax_list, category, year, tax_dict, gdp=None, attribute_var = None):
for tax_type in tax_list:
tax_dict[tax_type][year][category] = {}
tax_dict[tax_type][year][category]['value'] = calc.weighted_total_tax_dict(tax_type, tax_type+'ax') #Function in calculator class
#print(tax_dict[tax_type][year][category]['value'])
tax_dict[tax_type][year][category]['value_bill'] = {}
tax_dict[tax_type][year][category]['value_bill_str'] = {}
if gdp is not None:
tax_dict[tax_type][year][category]['value_gdp'] = {}
tax_dict[tax_type][year][category]['value_gdp_str'] = {}
for k in tax_dict[tax_type][year][category]['value'].keys():
tax_dict[tax_type][year][category]['value_bill'][k] = tax_dict[tax_type][year][category]['value'][k]/1e+9
tax_dict[tax_type][year][category]['value_bill_str'][k] = '{0:.2f}'.format(tax_dict[tax_type][year][category]['value_bill'][k])
if gdp is not None:
tax_dict[tax_type][year][category]['value_gdp'][k] = ((tax_dict[tax_type][year][category]['value'][k]/1e+9)/gdp[str(year)])*100
tax_dict[tax_type][year][category]['value_gdp_str'][k] = '{0:.2f}'.format(tax_dict[tax_type][year][category]['value_gdp'][k])
#print('tax_dict ', tax_dict)
return tax_dict
def weighted_total_tax_diff(tax_list, category1, category2, year, tax_dict, gdp=None, attribute_var = None):
for tax_type in tax_list:
tax_dict[tax_type][year][category2]['value_bill_diff'] = {}
tax_dict[tax_type][year][category2]['value_bill_diff_str'] = {}
if gdp is not None:
tax_dict[tax_type][year][category2]['value_diff_gdp'] = {}
tax_dict[tax_type][year][category2]['value_diff_gdp_str'] = {}
for k in tax_dict[tax_type][year][category1]['value_bill'].keys():
tax_dict[tax_type][year][category2]['value_bill_diff'][k] = (tax_dict[tax_type][year][category2]['value_bill'][k] -
tax_dict[tax_type][year][category1]['value_bill'][k])
tax_dict[tax_type][year][category2]['value_bill_diff_str'][k] = '{0:.2f}'.format(tax_dict[tax_type][year][category2]['value_bill_diff'][k])
if gdp is not None:
tax_dict[tax_type][year][category2]['value_diff_gdp'][k] = ((tax_dict[tax_type][year][category2]['value_bill'][k] -
tax_dict[tax_type][year][category1]['value_bill'][k])/gdp[str(year)])*100
tax_dict[tax_type][year][category2]['value_diff_gdp_str'][k] = '{0:.2f}'.format(tax_dict[tax_type][year][category2]['value_diff_gdp'][k])
return tax_dict
def screen_print(tax_list, category, year, tax_dict, item, item_desc):
for tax_type in tax_list:
print("The "+tax_type.upper()+" "+item_desc+" in billions is: ", tax_dict[tax_type][year][category][item]['All'])
def dict_to_df(dict1, tax_type, adjust_behavior):
# json.dumps(dict1)
# f = open('dict1.json')
# dict1 = json.load(f)
years = []
for keys in dict1[tax_type].keys():
years += [keys]
dict2 = {}
for year in years:
if adjust_behavior:
dict2[year] = [dict1[tax_type][year]['current_law']['value_bill']['All'],
dict1[tax_type][year]['reform']['value_bill']['All'],
dict1[tax_type][year]['reform_behavior']['value_bill']['All']]
else:
dict2[year] = [dict1[tax_type][year]['current_law']['value_bill']['All'],
dict1[tax_type][year]['reform']['value_bill']['All']]
if adjust_behavior:
df = pd.DataFrame.from_dict(dict2, columns = ['Current Law', 'Reform', 'Reform (B)'], orient='index')
df['Diff'] = df['Reform'] - df['Current Law']
df['Diff (B)'] = df['Reform (B)'] - df['Current Law']
df=df.round(1)
df.index = pd.to_numeric(df.index, errors='coerce')
df = df.rename_axis('Year').reset_index()
df=df[['Year','Current Law', 'Reform', 'Diff', 'Reform (B)', 'Diff (B)']]
else:
df = pd.DataFrame.from_dict(dict2, columns = ['Current Law', 'Reform'], orient='index')
df['Diff'] = df['Reform'] - df['Current Law']
df=df.round(1)
df.index = pd.to_numeric(df.index, errors='coerce')
df = df.rename_axis('Year').reset_index()
df=df[['Year','Current Law', 'Reform', 'Diff']]
return df
def generate_policy_revenues():
from taxcalc.growfactors import GrowFactors
from taxcalc.policy import Policy
from taxcalc.records import Records
from taxcalc.gstrecords import GSTRecords
from taxcalc.corprecords import CorpRecords
from taxcalc.parameters import ParametersBase
from taxcalc.calculator import Calculator
from taxcalc.utils import dist_variables
f = open('global_vars.json')
global_variables = json.load(f)
#print('global_variables in generate policy revenues ', global_variables)
verbose = global_variables['verbose']
start_year = int(global_variables['start_year'])
end_year = int(global_variables['end_year'])
data_start_year = int(global_variables['data_start_year'])
attribute_varlist = global_variables['attribute_vars']
percent_gdp=global_variables['percent_gdp']
if percent_gdp==0:
GDP_Nominal = None
else:
GDP_Nominal = global_variables['GDP_Nominal']
#print('display_revenue_table in generate policy revenues ',global_variables['cit'+'_display_revenue_table'])
if len(attribute_varlist)==0:
attribute_var = None
else:
attribute_var = attribute_varlist[0]
'''Create empty lists to store variable names i.e. pit, cit, vat in tax_list; citax, totax in tax_collection_var_list'''
tax_list=[]
tax_collection_var_list = []
id_varlist = []
# start the simulation for pit/cit/vat
if global_variables['pit']:
#tax_list = tax_list + ['pit', 'sst']
tax_list = tax_list + ['pit']
tax_collection_var_list = tax_collection_var_list + ['pitax']
id_varlist = id_varlist + [global_variables['pit_id_var']]
recs = Records(data=global_variables['pit_data_filename'], weights=global_variables['pit_weights_filename'], gfactors=GrowFactors(growfactors_filename=global_variables['GROWFACTORS_FILENAME']))
tax_collection_var = {}
for tax_type in tax_list:
tax_collection_var[tax_type] = tax_type+'ax'
else:
recs = None
if global_variables['cit']:
tax_list = tax_list + ['cit']
#tax_list = tax_list + ['cit', 'tot']
tax_collection_var_list = tax_collection_var_list + ['citax']
id_varlist = id_varlist + [global_variables['cit_id_var']]
crecs = CorpRecords(data=global_variables['cit_data_filename'], weights=global_variables['cit_weights_filename'], gfactors=GrowFactors(growfactors_filename=global_variables['GROWFACTORS_FILENAME']))
# crecs = CorpRecords(data=global_variables['cit_data_filename'], cfdata=global_variables['cit_cfdata_filename'],
# weights=global_variables['cit_weights_filename'],
# gfactors=GrowFactors(growfactors_filename=global_variables['GROWFACTORS_FILENAME']))
#tax_collection_var = 'citax'
tax_collection_var = {}
for tax_type in tax_list:
tax_collection_var[tax_type] = tax_type+'ax'
else:
crecs = None
if global_variables['vat']:
tax_list = tax_list + ['vat']
tax_collection_var_list = tax_collection_var_list + ['vatax']
id_varlist = id_varlist + [global_variables['vat_id_var']]
grecs = GSTRecords(data=global_variables['vat_data_filename'], weights=global_variables['vat_weights_filename'], gfactors=GrowFactors(growfactors_filename=global_variables['GROWFACTORS_FILENAME']))
tax_collection_var = 'vatax'
else:
grecs = None
adjust_behavior = 0
for tax_type in tax_list:
adjust_behavior = adjust_behavior or global_variables[tax_type+'_adjust_behavior']
#adjust_behavior = global_variables[tax_type+'_adjust_behavior']
'''For distribution tables create dictionaries to store names of distribution_json_filename (e.g. cit_distribution_armenia.json), and
distribution_vardict_dict to store the distribution variables (e.g. 'DIST VARIABLES' i.e. weight, calc_gti, citax; DIST TABLE COLUMNS;
DECILE ROW NAMES, STD ROW NAMES etc.)'''
chart_list = []
distribution_json_filename = {}
distribution_vardict_dict = {}
income_measure = {}
dist_var = {}
for tax_type in tax_list:
#print(tax_type)
if global_variables[tax_type+'_distribution_table']:
distribution_json_filename[tax_type] = 'taxcalc/'+global_variables[tax_type+'_distribution_json_filename']
f = open(distribution_json_filename[tax_type])
distribution_vardict_dict[tax_type] = json.load(f)
#print('distribution_vardict_dict[tax_type] ', distribution_vardict_dict[tax_type])
income_measure[tax_type] = distribution_vardict_dict[tax_type]['income_measure']
dist_var[tax_type] = distribution_vardict_dict[tax_type]['DIST_VARIABLES']
#print('income measure', income_measure[tax_type])
#tax_collection_var = tax_collection_var_list[0]
id_var = id_varlist[0]
revenue_dict={}
i=1
#j=0
''' window_dict is a tkinter window '''
window_dict={}
row_num = {}
data_row = {}
l_TAB3 = {}
'''dt1 and dt2 are used to store distribution table values - tax collection by weighted deciles '''
dt1 = {}
dt2 = {}
''' dt3 and dt4 are used to store distribution table values - tax collection by income level '''
dt3 = {}
dt4 = {}
''' dt1_percentile and dt2_percentile are used to store distribution table values - tax collection by percentiles '''
dt1_percentile = {}
dt2_percentile = {}
dt = {}
dt_percentile = {}
''' df_tax1 and df_tax2 stores values from calc.dataframe '''
df_tax1 = {}
df_tax2 = {}
''' title header store name of title in tables'''
title_header = {}
''' positional variables for table '''
shift_x = 600
shift_y = 140
shift = 500
'''Create empty dictionaries to store values for each tax type i.e. pit, cit, vat'''
for tax_type in tax_list:
revenue_dict[tax_type]={}
dt1[tax_type] = {}
dt2[tax_type] = {}
dt3[tax_type] = {}
dt4[tax_type] = {}
dt1_percentile[tax_type] = {}
dt2_percentile[tax_type] = {}
dt[tax_type] = {}
dt_percentile[tax_type] = {}
df_tax1[tax_type] = {}
df_tax2[tax_type] = {}
for year in range(data_start_year, end_year+1):
revenue_dict[tax_type][year]={}
print(tax_type)
'''Run calc1 '''
pol = Policy(DEFAULTS_FILENAME=global_variables['DEFAULTS_FILENAME'])
calc1 = Calculator(policy=pol, records=recs, corprecords=crecs, gstrecords=grecs, verbose=verbose)
assert isinstance(calc1, Calculator)
assert calc1.current_year == data_start_year
np.seterr(divide='ignore', invalid='ignore')
dt1[tax_type]={}
dt2[tax_type]={}
dt3[tax_type]={}
dt4[tax_type]={}
dt1_percentile[tax_type]={}
dt2_percentile[tax_type]={}
df_tax1[tax_type] = {}
df_tax2[tax_type] = {}
data = {}
data['calc1'] = {}
data['calc2'] = {}
for year in range(data_start_year, end_year+1):
dt1[tax_type][year]={}
dt2[tax_type][year]={}
dt3[tax_type][year]={}
dt4[tax_type][year]={}
dt1_percentile[tax_type][year]={}
dt2_percentile[tax_type][year]={}
df_tax1[tax_type][year]={}
df_tax2[tax_type][year]={}
calc1.advance_to_year(year)
calc1.calc_all()
revenue_dict = weighted_total_tax(calc1, tax_list, 'current_law', year, revenue_dict, GDP_Nominal, attribute_var)
if verbose:
print(f'TAX COLLECTION FOR THE YEAR - {year} \n')
screen_print(tax_list, 'current_law', year, revenue_dict, 'value_bill', 'Collection')
data['calc1'][year] = calc1.dataframe_cit(['id_n', 'Year', 'size', 'QIP_flag', 'Legal_form','profit_after_int', 'Op_wdv', 'Cl_wdv',
'net_accounting_profit', 'adjusted_profit', 'total_additions', 'normal_depr', 'depr', 'spl_depr',
'total_deductions', 'total_non_tax_inc', 'net_taxable_profit', 'Used_loss_total',
'Loss_lag1', 'Loss_lag2', 'Loss_lag3', 'Loss_lag4', 'Loss_lag5',
'Loss_lag6', 'Loss_lag7', 'Loss_lag8', 'Loss_lag9', 'Loss_lag10',
'newloss1', 'newloss2', 'newloss3', 'newloss4', 'newloss5',
'newloss6', 'newloss7', 'newloss8', 'newloss9', 'newloss10',
'net_tax_base_behavior', 'excess_tax', 'citax'])
cfdata = calc1.dataframe_cit(['id_n', 'newloss1', 'newloss2', 'newloss3', 'newloss4', 'newloss5',
'newloss6', 'newloss7', 'newloss8', 'newloss9', 'newloss10', 'Cl_wdv'])
# cfdata = cfdata.rename(columns={'newloss1' : "Loss_lag1", 'newloss2':"Loss_lag2", 'newloss3':"Loss_lag3",
# 'newloss4':"Loss_lag4", 'newloss5':"Loss_lag5",'newloss6':"Loss_lag6",
# 'newloss7':"Loss_lag7", 'newloss8':"Loss_lag8", 'newloss9':"Loss_lag9",
# 'newloss10':"Loss_lag10", 'Cl_wdv':'Op_wdv'})
cfdata.to_csv("taxcalc/cfdata.csv", index=False)
if global_variables[tax_type+'_distribution_table']:
#print(tax_type+'_distribution_table')
if not global_variables[tax_type+'_display_distribution_table_by_attribute']:
dist_table_attribute_var=None
else:
dist_table_attribute_var = attribute_var
f = open(distribution_json_filename[tax_type])
distribution_vardict_dict[tax_type] = json.load(f)
income_measure[tax_type] = distribution_vardict_dict[tax_type]['income_measure']
dist_var[tax_type] = distribution_vardict_dict[tax_type]['DIST_VARIABLES']
print('dist var is ', dist_var[tax_type])
attribute_value = 'All'
var_dataframe = calc1.distribution_table_dataframe(tax_type, dist_var[tax_type], attribute_value, attribute_var=None)
output_in_averages = True
output_categories = 'weighted_deciles'
dt1[tax_type][year][attribute_value] = create_distribution_table(var_dataframe, output_categories, distribution_vardict_dict[tax_type],
income_measure[tax_type], output_in_averages, scaling=True)
output_categories = 'standard_income_bins'
output_in_averages = False
dt3[tax_type][year][attribute_value] = create_distribution_table(var_dataframe, output_categories, distribution_vardict_dict[tax_type],
income_measure[tax_type], output_in_averages, scaling=True)
output_categories = 'weighted_percentiles'
dt1_percentile[tax_type][year][attribute_value] = create_distribution_table(var_dataframe, output_categories, distribution_vardict_dict[tax_type],
income_measure[tax_type], output_in_averages, scaling=True)
if tax_type=='pit':
df_tax1[tax_type][year]['All'] = calc1.dataframe([id_var, 'weight', income_measure[tax_type], tax_collection_var[tax_type]])
df_tax1[tax_type][year]['All'].set_index(id_var)
elif tax_type=='cit':
df_tax1[tax_type][year]['All'] = calc1.dataframe_cit([id_var, 'weight', 'sector', income_measure[tax_type], tax_collection_var[tax_type]])
df_tax1[tax_type][year]['All'].set_index(id_var)
elif tax_type=='tot':
df_tax1[tax_type][year]['All'] = calc1.dataframe_cit([id_var, 'weight', income_measure[tax_type], tax_collection_var[tax_type]])
df_tax1[tax_type][year]['All'].set_index(id_var)
elif tax_type=='vat':
df_tax1[tax_type][year]['All'] = calc1.dataframe_vat([id_var, 'weight', income_measure[tax_type], tax_collection_var])
df_tax1[tax_type][year]['All'].set_index(id_var)
'''Run calc2 '''
f = open('reform.json')
block_selected_dict = json.load(f)
if verbose:
print("block_selected_dict from json",block_selected_dict)
pol2 = Policy(DEFAULTS_FILENAME=global_variables['DEFAULTS_FILENAME'])
years, reform=read_reform_dict(block_selected_dict)
print('reform is ', reform['policy'])
pol2.implement_reform(reform['policy'])
calc2 = Calculator(policy=pol2, records=recs, corprecords=crecs, gstrecords=grecs, verbose=verbose)
for year in range(data_start_year, end_year+1):
calc2.advance_to_year(year)
calc2.calc_all()
revenue_dict = weighted_total_tax(calc2, tax_list, 'reform', year, revenue_dict, GDP_Nominal, attribute_var)
if verbose:
print(f'\nTAX COLLECTION FOR THE YEAR UNDER REFORM - {year} \n')
screen_print(tax_list, 'reform', year, revenue_dict, 'value_bill', 'Collection')
data['calc2'][year] = calc2.dataframe_cit(['id_n', 'Year', 'size', 'profit_after_int', 'Op_wdv', 'Cl_wdv',
'net_accounting_profit', 'net_taxable_profit', 'Legal_form', 'Used_loss_total',
'Loss_lag1', 'Loss_lag2', 'Loss_lag3', 'Loss_lag4', 'Loss_lag5',
'Loss_lag6', 'Loss_lag7', 'Loss_lag8', 'Loss_lag9', 'Loss_lag10',
'newloss1', 'newloss2', 'newloss3', 'newloss4', 'newloss5',
'newloss6', 'newloss7', 'newloss8', 'newloss9', 'newloss10',
'net_tax_base_behavior', 'excess_tax', 'citax'])
cfdata = calc2.dataframe_cit(['id_n', 'newloss1', 'newloss2', 'newloss3', 'newloss4', 'newloss5',
'newloss6', 'newloss7', 'newloss8', 'newloss9', 'newloss10', 'Cl_wdv'])
# cfdata = cfdata.rename(columns={'newloss1' : "Loss_lag1", 'newloss2':"Loss_lag2", 'newloss3':"Loss_lag3",
# 'newloss4':"Loss_lag4", 'newloss5':"Loss_lag5",'newloss6':"Loss_lag6",
# 'newloss7':"Loss_lag7", 'newloss8':"Loss_lag8", 'newloss9':"Loss_lag9",
# 'newloss10':"Loss_lag10", 'Cl_wdv':'Op_wdv'})
cfdata.to_csv("taxcalc/cfdata.csv", index=False)
if global_variables[tax_type+'_distribution_table']:
#print(tax_type+'_distribution_table')
if not global_variables[tax_type+'_display_distribution_table_by_attribute']:
dist_table_attribute_var=None
else:
dist_table_attribute_var = attribute_var
f = open(distribution_json_filename[tax_type])
distribution_vardict_dict[tax_type] = json.load(f)
income_measure[tax_type] = distribution_vardict_dict[tax_type]['income_measure']
dist_var[tax_type] = distribution_vardict_dict[tax_type]['DIST_VARIABLES']
print('dist var is ', dist_var[tax_type])
attribute_value = 'All'
var_dataframe = calc2.distribution_table_dataframe(tax_type, dist_var[tax_type], attribute_value, attribute_var=None)
output_in_averages = True
output_categories = 'weighted_deciles'
dt2[tax_type][year][attribute_value] = create_distribution_table(var_dataframe, output_categories, distribution_vardict_dict[tax_type],
income_measure[tax_type], output_in_averages, scaling=True)
output_categories = 'standard_income_bins'
output_in_averages = False
dt4[tax_type][year][attribute_value] = create_distribution_table(var_dataframe, output_categories, distribution_vardict_dict[tax_type],
income_measure[tax_type], output_in_averages, scaling=True)
output_categories = 'weighted_percentiles'
dt2_percentile[tax_type][year][attribute_value] = create_distribution_table(var_dataframe, output_categories, distribution_vardict_dict[tax_type],
income_measure[tax_type], output_in_averages, scaling=True)
if tax_type=='pit':
df_tax2[tax_type][year]['All'] = calc2.dataframe([id_var, 'weight', income_measure[tax_type], tax_collection_var[tax_type]])
df_tax2[tax_type][year]['All'].set_index(id_var)
elif tax_type=='cit':
df_tax2[tax_type][year]['All'] = calc2.dataframe_cit([id_var, 'weight', 'sector', income_measure[tax_type], tax_collection_var[tax_type]])
df_tax2[tax_type][year]['All'].set_index(id_var)
elif tax_type=='tot':
df_tax2[tax_type][year]['All'] = calc2.dataframe_cit([id_var, 'weight', income_measure[tax_type], tax_collection_var[tax_type]])
df_tax2[tax_type][year]['All'].set_index(id_var)
elif tax_type=='vat':
df_tax2[tax_type][year]['All'] = calc2.dataframe_vat([id_var, 'weight', income_measure[tax_type], tax_collection_var])
df_tax2[tax_type][year]['All'].set_index(id_var)
if adjust_behavior:
elasticity_dict = {}
for tax_type in tax_list:
f = open('taxcalc/'+tax_type+'_elasticity_selection.json')
elasticity_dict[tax_type] = json.load(f)
if len(elasticity_dict[tax_type])>0:
print(elasticity_dict)
block_selected_dict = concat_dicts(block_selected_dict, elasticity_dict[tax_type])
pol3 = Policy(DEFAULTS_FILENAME=global_variables['DEFAULTS_FILENAME'])
years, reform=read_reform_dict(block_selected_dict)
pol3.implement_reform(reform['policy'])
calc3 = Calculator(policy=pol3, records=recs, corprecords=crecs, gstrecords=grecs, verbose=verbose)
for year in range(data_start_year, end_year+1):
#redo the calculations by including behavioral adjustment
calc3.advance_to_year(year)
calc3.calc_all()
cfdata = calc3.dataframe_cit(['id_n', 'newloss1', 'newloss2', 'newloss3', 'newloss4', 'newloss5',
'newloss6', 'newloss7', 'newloss8', 'newloss9', 'newloss10', 'Cl_wdv'])
# cfdata = cfdata.rename(columns={'newloss1' : "Loss_lag1", 'newloss2':"Loss_lag2", 'newloss3':"Loss_lag3",
# 'newloss4':"Loss_lag4", 'newloss5':"Loss_lag5",'newloss6':"Loss_lag6",
# 'newloss7':"Loss_lag7", 'newloss8':"Loss_lag8", 'newloss9':"Loss_lag9",
# 'newloss10':"Loss_lag10", 'Cl_wdv':'Op_wdv'})
cfdata.to_csv("taxcalc/cfdata.csv", index=False)
'''Fourth category added to revenue_dict is 'behavior' if behavior is selected in tab3'''
revenue_dict = weighted_total_tax(calc3, tax_list, 'reform_behavior', year, revenue_dict, GDP_Nominal, attribute_var)
if verbose:
print(f'\nTAX COLLECTION FOR THE YEAR UNDER REFORM WITH BEHAVIOR ADJUSTMENT - {year} \n')
screen_print(tax_list, 'reform_behavior', year, revenue_dict,
'value_bill', 'Collection with Behavioral Adjustment')
'''Third category is difference between current policy and reform'''
for year in range(data_start_year, end_year+1):
revenue_dict = weighted_total_tax_diff(tax_list, 'current_law', 'reform', year, revenue_dict, GDP_Nominal, attribute_var)
if verbose:
screen_print(tax_list, 'reform', year, revenue_dict, 'value_bill_diff', 'Collection difference under Reform')
if adjust_behavior:
revenue_dict = weighted_total_tax_diff(tax_list, 'current_law', 'reform_behavior', year, revenue_dict, GDP_Nominal, attribute_var)
if verbose:
screen_print(tax_list, 'reform_behavior', year, revenue_dict,
'value_bill_diff', 'Collection difference with Behavioral Adjustment')
df = dict_to_df(revenue_dict, tax_type, adjust_behavior)
#Note that from previous step the row_num has been increased by 1 -
#Thus after first row containing headers, output of display_table was 2 - thus row_num for first loop with year 2022 is 2.
#After the first loop with year=2022, output of display_table is 3 and so on
'''
Display table is a function in display_func.py with following arguments
display_table(window, data=None, header=None, year=None, row=None, footer=None, all=None, dataframe=None)
Here window is the tkinter window, data is the row to be added to the table i.e. for each year - weighted tax collection under
current law, reform and difference; row is the row number where data is to be added - the display function gives the last row + 1 as output
to be used as input in the next iteration so that a new row can be added with that row position
e.g.
data_row['cit'] = ['2022', 279.64, 279.64, 0]
'''
for tax_type in tax_list:
if global_variables[tax_type+'_display_revenue_table']:
if year>=start_year:
window_dict[tax_type] = tk.Toplevel()
window_dict[tax_type].geometry("650x600+"+str(shift_x)+"+"+str(shift_y))
window_dict[tax_type].font = ("Courier New", 12)
shift_x = shift_x + shift
shift_y = shift_y
#display_table(window, header=True) - display the headers i.e. Year, Current Law, Reform, Difference
header = ["header","Year", "Current Law", "Reform", "Diff"]
if global_variables[tax_type+'_adjust_behavior']:
header = header + ['Reform (Behavior)', "Diff"]
title_header[tax_type] = [["title", tax_type.upper()+" Projections (billions)"], header]
if percent_gdp:
title_header[tax_type] = [["title", tax_type.upper()+" Projections (% of GDP)"], header]
row_num[tax_type] = display_table(window_dict[tax_type], data=title_header[tax_type], header=True)
row_num[tax_type] = display_table(window_dict[tax_type], row = row_num[tax_type], dataframe=df)
print('df_tax1', df_tax1)
for year in range(data_start_year, data_start_year+2):
dfcalc1 = data['calc1'].get(year)
dfcalc1.to_csv('outputcalc1'+ '{}'.format(year) + '.csv', index=False)
dfcalc2 = data['calc2'].get(year)
dfcalc2.to_csv('outputcalc2'+ '{}'.format(year) + '.csv', index=False)
def calc_gini(df_tax12, tax_type):
"""
Return gini.
"""
gini = pd.DataFrame()
gini['weight'] = df_tax12['All']['weight'+'_'+str(start_year)]
gini['pre_tax_income'] =abs(df_tax12['All'][income_measure[tax_type]+'_'+str(start_year)])
gini['pitax_current_law'] = df_tax12['All'][tax_collection_var[tax_type]+'_'+str(start_year)]
gini['pitax_reform'] = df_tax12['All'][tax_collection_var[tax_type]+'_ref_'+str(start_year)]
varlist = ['pre_tax_income', 'pitax_current_law', 'pitax_reform']
kakwani_list = []
gini= gini.sort_values(by='pre_tax_income')
#gini['weight'] = 100
gini['cumulative_weight']=np.cumsum(gini['weight'])
sum_weight = (gini['weight']).sum()
# This is the cumulative population plotted on the X Axis
gini['percentage_cumul_pop'] = gini['cumulative_weight']/sum_weight
gini['total_income'] = gini['weight']*gini['pre_tax_income']
# This is the cumulative income plotted on the Y Axis
gini['cumulative_total_income']= np.cumsum(gini['total_income'])
sum_total_income = sum(gini['total_income'])
gini['percentage_cumul_income'] = gini['cumulative_total_income']/sum_total_income
# This is the gap between the 45 degree line and the Lorenz curve
# We are trying to calculate "A"
# 45 degree line means that the "Y Value" is the same as the
# the "X Value" i.e. gini['percentage_cumul_pop']
gini['height'] = gini['percentage_cumul_pop']-gini['percentage_cumul_income']
# We insert a zero row in the beginning inorder to have a reading
# for the origin (0,0) of the Lorenz curve
gini1 = pd.DataFrame([[np.nan]*len(gini.columns)], columns=gini.columns)
#gini = gini1.append(gini, ignore_index=True)
gini = pd.concat([gini1, gini], axis=0)
# taking care of the NANs including filling 0 in the first row
gini['percentage_cumul_pop']= gini['percentage_cumul_pop'].fillna(0)
gini['percentage_cumul_income']= gini['percentage_cumul_income'].fillna(0)
gini['height']= gini['height'].fillna(0)
gini['base'] = gini.percentage_cumul_pop.diff()
gini['base']= gini['base'].fillna(0)
# Calculate the area of the trapezoid
gini['integrate_area']= 0.5*gini['base']*(gini['height']+gini['height'].shift())
sum_integrate_area = gini['integrate_area'].sum()
# The Gini is 2xA where A is the area between the 45 degree
# line and the Lorenz Curve
gini_index0 = 2*(sum_integrate_area)
kakwani_list = kakwani_list + [gini_index0]
# Repeat the process to calculate the Concentration Coefficient
# for the remaining variables. We retain the same order
# as that when we calculated the Gini for Income
# so we do not sort the values
for var in varlist[1:]:
# We drop the zero row we created earlier
gini = gini[1:]
# We use the same columns "total_income"
# This could be renamed as "Y var" to be more general
gini['total_income'] = gini['weight']*gini[var]
gini['cumulative_total_income']= np.cumsum(gini['total_income'])
sum_total_income = sum(gini['total_income'])
gini['percentage_cumul_income'] = gini['cumulative_total_income']/sum_total_income
gini['height'] = gini['percentage_cumul_pop']-gini['percentage_cumul_income']
gini1 = pd.DataFrame([[np.nan]*len(gini.columns)], columns=gini.columns)
gini = pd.concat([gini1, gini], axis=0)
gini['percentage_cumul_pop']= gini['percentage_cumul_pop'].fillna(0)
gini['percentage_cumul_income']= gini['percentage_cumul_income'].fillna(0)
gini['height']= gini['height'].fillna(0)
gini['base'] = gini.percentage_cumul_pop.diff()
gini['base']= gini['base'].fillna(0)
gini['integrate_area']= 0.5*gini['base']*(gini['height']+gini['height'].shift())
sum_integrate_area = gini['integrate_area'].sum()
gini_index = 2*(sum_integrate_area)
kakwani_list = kakwani_list + [gini_index-gini_index0]
return kakwani_list
def merge_distribution_table_dicts(dt1, dt2, tax_type, data_start_year, end_year):
attribute_types = dt1[tax_type][data_start_year].keys()
print('attribute types in merge dist table func', attribute_types)
dt = {}
distribution_json_filename[tax_type] = 'taxcalc/'+global_variables[tax_type+'_distribution_json_filename']
f = open(distribution_json_filename[tax_type])
distribution_vardict_dict[tax_type] = json.load(f)
income_measure[tax_type] = distribution_vardict_dict[tax_type]['income_measure']
print('imeasure', income_measure[tax_type])
for year in range(data_start_year, end_year+1):
for attribute_value in attribute_types:
dt1[tax_type][year][attribute_value] = dt1[tax_type][year][attribute_value].rename(columns={'weight': 'weight_'+str(year), tax_collection_var[tax_type]:tax_collection_var[tax_type]+'_'+str(year), income_measure[tax_type]:income_measure[tax_type] +'_'+str(year)})
dt2[tax_type][year][attribute_value] = dt2[tax_type][year][attribute_value].rename(columns={'weight': 'weight_ref_'+str(year), tax_collection_var[tax_type]:tax_collection_var[tax_type]+'_ref_'+str(year), income_measure[tax_type]:income_measure[tax_type]+'_ref_'+str(year)})
for attribute_value in attribute_types:
dt[attribute_value] = dt1[tax_type][data_start_year][attribute_value][['weight_'+str(data_start_year), tax_collection_var[tax_type]+'_'+str(data_start_year), income_measure[tax_type]+'_'+str(data_start_year)]]
#to cover years, if any, in the data before the start year e.g. data start year is 2018 but start year is 2022 - then years from 2018-2021 will be covered
for year in range(data_start_year+1, start_year+1):
dt[attribute_value]=dt[attribute_value].join(dt1[tax_type][year][attribute_value][['weight_'+str(year), tax_collection_var[tax_type]+'_'+str(year), income_measure[tax_type]+'_'+str(year)]])
#to cover year from start to end year
for year in range(start_year, end_year+1):
dt[attribute_value]=dt[attribute_value].join(dt2[tax_type][year][attribute_value][['weight_ref_'+str(year), tax_collection_var[tax_type]+'_ref_'+str(year), income_measure[tax_type]+'_ref_'+str(year)]])
#print('dt', dt)
return dt
print('revenue_dict', revenue_dict)
with open('revenue_dict.json', 'w') as f:
json.dump(revenue_dict, f)
#save the results of each tax type in separate files
df = {}
# save the results into a csv file
#for tax_type in [tax_list[0]]:
for tax_type in tax_list:
filename_chart_rev_projection = tax_type+'_revenue_projection'
revenue_dict_df = {}
for k, v in revenue_dict[tax_type].items():
revenue_dict_df[k] = {}
for k1 in revenue_dict[tax_type][year]['current_law']['value'].keys():
revenue_dict_df[k]['current_law_'+k1] = revenue_dict[tax_type][k]['current_law']['value_bill_str'][k1]
revenue_dict_df[k]['reform_'+k1] = revenue_dict[tax_type][k]['reform']['value_bill_str'][k1]
if adjust_behavior:
revenue_dict_df[k]['reform_behavior_'+k1] = revenue_dict[tax_type][k]['reform_behavior']['value_bill_str'][k1]
df[tax_type] = pd.DataFrame.from_dict(revenue_dict_df)
print(df[tax_type], 'df tax_type')
df_str = df[tax_type].to_string()
df_reform = pd.DataFrame.from_dict(reform)
df_reform_str = df_reform.to_string()
text_output1 = df_str + '\n\n' + df_reform_str + '\n\n'
write_file(df[tax_type], text_output1, filename_chart_rev_projection)
chart_list = chart_list + [tax_type+'_revenue_projection']
if global_variables[tax_type+'_display_revenue_table']:
last_row = row_num[tax_type]
l_TAB3[tax_type] = tk.Button(window_dict[tax_type],
text="Save Results",
command=lambda: write_file(df[tax_type],
text_output1,
filename_chart_rev_projection,
window_dict[tax_type],
last_row
))
l_TAB3[tax_type].grid(row=row_num[tax_type]+2, column=2, pady = 10, sticky=tk.W)
#footer = ["footer", "*Data saved in file "+ filename1]
#row_num = display_table(window, data=footer, footer=row_num+2)
'''
---------------------------------------------------------------------------------------
###### DISTRIBUTION TABLES ##############
--------------------------------------------------------------------------------------
'''
def display_distribution_table_window(tax_type):
window_dist = {}
row_num = {}
df_tax12={}
dt12={}
dt34={}
df_tax12 = merge_distribution_table_dicts(df_tax1, df_tax2, tax_type, data_start_year, end_year)
print('df_tax1', df_tax1)
dt12 = merge_distribution_table_dicts(dt1, dt2, tax_type, data_start_year, end_year)
dt34 = merge_distribution_table_dicts(dt3, dt4, tax_type, data_start_year, end_year)
dt_percentile = merge_distribution_table_dicts(dt1_percentile, dt2_percentile, tax_type, data_start_year, end_year)
if tax_type == 'pit':
kakwani_list = calc_gini(df_tax12, tax_type)
else:
kakwani_list = [np.NaN]
print('kakwani', kakwani_list)
dt12['All'].update(dt12['All'].select_dtypes(include=np.number).applymap('{:,.0f}'.format))
dt12['All'].to_pickle('file1.pkl')
dt12['All'] = pd.read_pickle('file1.pkl')
dt34['All'].update(dt34['All'].select_dtypes(include=np.number).applymap('{:,.0f}'.format))
dt34['All'].to_pickle('file2.pkl')
dt34['All'] = pd.read_pickle('file2.pkl')
dt_tax_all12 = dt12['All'][dt12['All'].columns[dt12['All'].columns.str.contains(tax_collection_var[tax_type])]]
dt_tax_all34 = dt34['All'][dt34['All'].columns[dt34['All'].columns.str.contains(tax_collection_var[tax_type])]]
dt_tax_all12 = dt_tax_all12.reset_index()
dt_tax_all34 = dt_tax_all34.reset_index()
# ETR is calculated for the Start Year
dt_percentile['All']['ETR'] = dt_percentile['All'][tax_collection_var[tax_type]+'_'+str(start_year)]/dt_percentile['All'][income_measure[tax_type]+'_'+str(start_year)]
print('dtype is , ', dt_percentile['All']['ETR'].dtype)
dt_percentile['All']['ETR_ref'] = dt_percentile['All'][tax_collection_var[tax_type]+'_ref_'+str(start_year)]/dt_percentile['All'][income_measure[tax_type]+'_ref_'+str(start_year)]
dt_percentile['All'].update(dt_percentile['All'].select_dtypes(include=np.number).applymap('{:,.4f}'.format))
dt_percentile['All']['ETR'] = dt_percentile['All']['ETR'].fillna(0)
dt_percentile['All']['ETR'][dt_percentile['All']['ETR'] == -inf] = 0
dt_percentile['All']['ETR_ref'] = dt_percentile['All']['ETR_ref'].fillna(0)
dt_percentile['All']['ETR_ref'][dt_percentile['All']['ETR_ref'] == -inf] = 0
# dt_percentile['All']['ETR'][float(dt_percentile['All']['ETR']) < 0.0] = 0.0
# dt_percentile['All']['ETR_ref'][float(dt_percentile['All']['ETR_ref']) < 0.0] = 0.0
# dt_percentile['All']['ETR'][dt_percentile['All']['ETR'] > 0.3] = 0.3
# dt_percentile['All']['ETR_ref'][dt_percentile['All']['ETR_ref'] > 0.3] = 0.3
# dt_percentile['All']['ETR'] = min(max(dt_percentile['All']['ETR'], 0), 0.3)
# dt_percentile['All']['ETR_ref'] = min(max(dt_percentile['All']['ETR_ref'], 0), 0.3)
# Adjust this for number of years selected
filename1 = tax_type+'_distribution_table_sector'
text_output1 = df_tax1[tax_type][start_year]['All'].to_string() + '\n\n'
filename2 = tax_type+'_distribution_table'
text_output2 = dt12['All'].to_string() + '\n\n'
filename3 = tax_type+'_distribution_table_top1'
text_output3 = dt12['All'].to_string() + '\n\n'
filename4 = tax_type+'_distribution_table_income_bins'
text_output4 = dt34['All'].to_string() + '\n\n'
write_file(df_tax2[tax_type][start_year]['All'], text_output1, filename1)
write_file(dt_tax_all12, text_output2, filename2)
write_file(dt_tax_all12, text_output3, filename3)
write_file(dt_tax_all34, text_output4, filename4)
filename_etr = tax_type+'_etr'
text_output_etr = dt_percentile['All'].to_string() + '\n\n'
#print('dt_percentile[tax_type][All]', dt_percentile[tax_type]['All'])
write_file(dt_percentile['All'], text_output_etr, filename_etr)
if global_variables[tax_type+'_display_distribution_table_byincome']:
window_dist[tax_type] = tk.Toplevel()
window_dist[tax_type].geometry("1400x700+600+140")
header1 = ["header","", tax_type.upper()]
header2 = ["header",'Gross taxable income']
for year in range(data_start_year, start_year+1):
header1 = header1+[tax_type.upper()]
header2 = header2+['Current Law '+str(year)]
for year in range(start_year, end_year+1):
header1 = header1+[tax_type.upper()]
header2 = header2+['Reform '+str(year)]
title_header = [["title", tax_type.upper()+" Contribution by Income Groups (fig in millions)"],
header1, header2]
row_num[tax_type] = display_table(window_dist[tax_type], data=title_header, header=True)
row_num[tax_type] = display_table(window_dist[tax_type], row = row_num[tax_type], dataframe=dt_tax_all34)
l = tk.Button(window_dist[tax_type],text="Save Results",command=lambda: write_file(dt_tax_all34, text_output4, filename4, window_dist[tax_type], row_num[tax_type]))
l.grid(row=row_num[tax_type]+2, column=2, pady = 10, sticky=tk.W)
elif global_variables[tax_type+'_display_distribution_table_bydecile']:
window_dist[tax_type] = tk.Toplevel()
window_dist[tax_type].geometry("1400x700+600+140")
header1 = ["header","", tax_type.upper()+' (LCU)']
header2 = ["header",'Decile']
for year in range(data_start_year, start_year+1):
header1 = header1+[tax_type.upper()+' (LCU)']
header2 = header2+['Current Law '+str(year)]
for year in range(start_year, end_year+1):
header1 = header1+[tax_type.upper()+' (LCU)']
header2 = header2+['Reform '+str(year)]
title_header = [["title", tax_type.upper()+" Average Tax Liability (LCU) - Distribution by Deciles (Income Measure: Adjusted Book Profits)"],
header1, header2]
row_num[tax_type] = display_table(window_dist[tax_type], data=title_header, header=True)
row_num[tax_type] = display_table(window_dist[tax_type], row = row_num[tax_type], dataframe=dt_tax_all12)
l = tk.Button(window_dist[tax_type],text="Save Results",command=lambda: write_file(dt_tax_all12, text_output2, filename2, window_dist[tax_type], row_num[tax_type]))
l.grid(row=row_num[tax_type]+2, column=2, pady = 10, sticky=tk.W)
return kakwani_list
#return None
#kakwani_list = {}
for tax_type in tax_list:
if global_variables[tax_type+'_distribution_table']:
#kakwani_list[tax_type] = display_distribution_table_window(tax_type)
kakwani_list = display_distribution_table_window(tax_type)
print('kakwani', kakwani_list)
# #for tax_type in [tax_list[0]]:
# for tax_type in tax_list:
global_variables[tax_type +'_display_revenue_table'] = 1
chart_list = chart_list + [tax_type+'_distribution_table']
chart_list = chart_list + [tax_type+'_distribution_table_top1']
chart_list = chart_list + [tax_type+'_distribution_table_income_bins']
#chart_list = chart_list + [tax_type+'_distribution_table_sector']
chart_list = chart_list + [tax_type+'_etr']
#global_variables['kakwani_list'+tax_type] = kakwani_list[tax_type]
global_variables['kakwani_list'] = kakwani_list
global_variables['charts_ready'] = 1
print('chart_list ', chart_list)
global_variables['chart_list'] = chart_list
with open('global_vars.json', 'w') as f:
f.write(json.dumps(global_variables, indent=2))