-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict-image-lbp.py
92 lines (75 loc) · 2.76 KB
/
predict-image-lbp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import sys
from helpers import image_util
import numpy as np
from numpy import linalg as la
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from helpers import lbp_extract_feature
import math
from os.path import join
def append_column(arr, values):
if len(arr) == 0:
return values
return np.append(arr, values, axis=1)
def get_histograms(file_path='lbp-model/histogram.txt'):
f = open(file_path, 'r')
samples = list(f.readlines())
f.close()
samples = [sample.strip() for sample in samples if len(sample.strip()) > 0] # m images
histograms = []
for sample in samples:
u = []
sample = sample.strip(';')
data = [x.strip() for x in sample.split(";") if len(sample.strip(";")) > 0]
for histogram in data:
u = append_column(u, np.matrix(histogram).transpose()) # 59x20
histograms.append(u.transpose()) # 20x59
return np.array(histograms)
def get_mean_histograms(file_path='lbp-model/mean-histogram.txt'):
f = open(file_path, 'r')
sample = f.read().strip(';')
f.close()
u = []
data = [x.strip() for x in sample.split(";") if len(sample.strip(";")) > 0]
for histogram in data:
u = append_column(u, np.matrix(histogram).transpose()) # 59x20
return u.transpose() # 20x59
def chi_square(s, m, threshold):
if s.shape != m.shape:
raise ArithmeticError('Size of 2 tuples not fit')
rows, cols = s.shape
result = 0
for row in range(rows):
for col in range(cols):
x = s[row, col]
y = m[row, col]
if abs(x + y) != 0:
result += math.pow((x - y), 2) / abs(x + y)
similarity = result / (rows * cols)
print similarity
return similarity < threshold
def get_info(file_path='lbp-model/info.txt'):
f = open(file_path, 'r')
data = list(f.readlines())
height = int(data[0].strip())
width = int(data[1].strip())
return height, width
if __name__ == '__main__':
filename = sys.argv[1]
try:
THRESHOLD = float(sys.argv[2])
except IndexError:
THRESHOLD = 0.03
data = image_util.load_image(filename)
if not image_util.is_grayscale(filename):
data = image_util.rgb2gray(data)
height, width = get_info()
resize_data = image_util.resize_image(data, width, height)
local_histograms = lbp_extract_feature.extract_face(data=resize_data, log=join("output/", filename),
debug=True) # 20x59
norm = la.norm(local_histograms, axis=1)
norm = norm.reshape((20, 1))
local_histograms = np.divide(local_histograms, norm)
mean_histograms = get_mean_histograms()
result = chi_square(local_histograms, mean_histograms, threshold=THRESHOLD)
print result