forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_pairwise.py
220 lines (176 loc) · 8.35 KB
/
train_pairwise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import os
import random
import time
import numpy as np
import paddle
import paddle.nn.functional as F
import paddlenlp as ppnlp
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.datasets import load_dataset
from paddlenlp.transformers import LinearDecayWithWarmup
from data import create_dataloader, gen_pair
from data import convert_pairwise_example as convert_example
from model import PairwiseMatching
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--margin", default=0.2, type=float, help="Margin for pos_score and neg_score.")
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=3, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--eval_step", default=100, type=int, help="Step interval for evaluation.")
parser.add_argument('--save_step', default=10000, type=int, help="Step interval for saving checkpoint.")
parser.add_argument('--max_step', default=10000, type=int, help="Max steps for training.")
parser.add_argument("--warmup_proportion", default=0.0, type=float, help="Linear warmup proption over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="Random seed for initialization.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
@paddle.no_grad()
def evaluate(model, metric, data_loader, phase="dev"):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
"""
model.eval()
metric.reset()
for idx, batch in enumerate(data_loader):
input_ids, token_type_ids, labels = batch
pos_probs = model.predict(
input_ids=input_ids, token_type_ids=token_type_ids)
neg_probs = 1.0 - pos_probs
preds = np.concatenate((neg_probs, pos_probs), axis=1)
metric.update(preds=preds, labels=labels)
print("eval_{} auc:{:.2}".format(phase, metric.accumulate()))
metric.reset()
model.train()
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
train_ds, dev_ds = load_dataset("lcqmc", splits=["train", "dev"])
train_ds = gen_pair(train_ds)
# If you want to use ernie1.0 model, plesace uncomment the following code
# pretrained_model = ppnlp.transformers.ErnieModel.from_pretrained('ernie-1.0')
# tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained('ernie-1.0')
pretrained_model = ppnlp.transformers.ErnieGramModel.from_pretrained(
'ernie-gram-zh')
tokenizer = ppnlp.transformers.ErnieGramTokenizer.from_pretrained(
'ernie-gram-zh')
trans_func_train = partial(
convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length)
trans_func_eval = partial(
convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
phase="eval")
batchify_fn_train = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # pos_pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # pos_pair_segment
Pad(axis=0, pad_val=tokenizer.pad_token_id), # neg_pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id) # neg_pair_segment
): [data for data in fn(samples)]
batchify_fn_eval = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # pair_input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # pair_segment
Stack(dtype="int64") # label
): [data for data in fn(samples)]
train_data_loader = create_dataloader(
train_ds,
mode='train',
batch_size=args.batch_size,
batchify_fn=batchify_fn_train,
trans_fn=trans_func_train)
dev_data_loader = create_dataloader(
dev_ds,
mode='dev',
batch_size=args.batch_size,
batchify_fn=batchify_fn_eval,
trans_fn=trans_func_eval)
model = PairwiseMatching(pretrained_model, margin=args.margin)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
metric = paddle.metric.Auc()
global_step = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
pos_input_ids, pos_token_type_ids, neg_input_ids, neg_token_type_ids = batch
loss = model(
pos_input_ids=pos_input_ids,
neg_input_ids=neg_input_ids,
pos_token_type_ids=pos_token_type_ids,
neg_token_type_ids=neg_token_type_ids)
global_step += 1
if global_step > args.max_step:
print(
"Training steps have achieved max_step, training is stopped."
)
return
if global_step % 10 == 0 and rank == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss,
10 / (time.time() - tic_train)))
tic_train = time.time()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.eval_step == 0 and rank == 0:
evaluate(model, metric, dev_data_loader, "dev")
if global_step % args.save_step == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_param_path = os.path.join(save_dir, 'model_state.pdparams')
paddle.save(model.state_dict(), save_param_path)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
do_train()