forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
54 lines (43 loc) · 1.72 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import numpy as np
import paddle
from model import VAESeq2SeqInferModel
from args import parse_args
from data import create_data_loader
def infer(args):
print(args)
device = paddle.set_device(args.device)
_, _, _, vocab, bos_id, eos_id, _ = create_data_loader(args)
net = VAESeq2SeqInferModel(args.embed_dim, args.hidden_size,
args.latent_size, len(vocab) + 2)
model = paddle.Model(net)
model.prepare()
model.load(args.init_from_ckpt)
infer_output = paddle.ones((args.batch_size, 1), dtype='int64') * bos_id
space_token = ' '
line_token = '\n'
with io.open(args.infer_output_file, 'w', encoding='utf-8') as out_file:
predict_lines = model.predict_batch(infer_output)[0]
for line in predict_lines:
end_id = -1
if eos_id in line:
end_id = np.where(line == eos_id)[0][0]
new_line = [vocab.to_tokens(e[0]) for e in line[:end_id]]
out_file.write(space_token.join(new_line))
out_file.write(line_token)
if __name__ == '__main__':
args = parse_args()
infer(args)