forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
407 lines (344 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.nn.initializer as I
class CrossEntropyWithKL(nn.Layer):
"""
backward_loss = kl_loss * kl_weight + cross_entropy_loss
"""
def __init__(self, base_kl_weight, anneal_r):
super(CrossEntropyWithKL, self).__init__()
self.kl_weight = base_kl_weight
self.anneal_r = anneal_r
self.loss = 0.0
self.kl_loss = 0.0
self.rec_loss = 0.0
def update_kl_weight(self):
self.kl_weight = min(1.0, self.kl_weight + self.anneal_r)
def forward(self, kl_loss, dec_output, trg_mask, label):
self.update_kl_weight()
self.kl_loss = kl_loss
rec_loss = F.cross_entropy(
input=dec_output, label=label, reduction='none', soft_label=False)
rec_loss = paddle.squeeze(rec_loss, axis=[2])
rec_loss = rec_loss * trg_mask
rec_loss = paddle.mean(rec_loss, axis=[0])
rec_loss = paddle.sum(rec_loss)
self.rec_loss = rec_loss
self.loss = self.kl_loss * self.kl_weight + self.rec_loss
return self.loss
class Perplexity(paddle.metric.Metric):
def __init__(self, name='ppl', reset_freq=100, *args, **kwargs):
self.cross_entropy = kwargs.pop('loss')
super(Perplexity, self).__init__(*args, **kwargs)
self._name = name
self.total_ce = 0
self.word_count = 0
self.reset_freq = reset_freq
self.batch_size = 0
def update(self, kl_loss, dec_output, trg_mask, label, *args):
# Perplexity is calculated using cross entropy
self.batch_size = dec_output.shape[0]
loss = self.cross_entropy.loss.numpy()
self.total_ce += loss[0] * self.batch_size
self.word_count += np.sum(trg_mask)
def reset(self):
self.total_ce = 0
self.word_count = 0
def accumulate(self):
return np.exp(self.total_ce / self.word_count)
def name(self):
return self._name
class NegativeLogLoss(paddle.metric.Metric):
def __init__(self, name='nll', reset_freq=100, *args, **kwargs):
self.cross_entropy = kwargs.pop('loss')
super(NegativeLogLoss, self).__init__(*args, **kwargs)
self._name = name
self.total_ce = 0
self.batch_count = 0
self.reset_freq = reset_freq
self.batch_size = 0
self.sample_count = 0
def update(self, kl_loss, dec_output, trg_mask, label, *args):
self.batch_size = dec_output.shape[0]
loss = self.cross_entropy.loss.numpy()
self.total_ce += loss[0] * self.batch_size
self.sample_count += self.batch_size
def reset(self):
self.total_ce = 0
self.sample_count = 0
def accumulate(self):
return (self.total_ce / self.sample_count)
def name(self):
return self._name
class TrainCallback(paddle.callbacks.ProgBarLogger):
def __init__(self, ppl, nll, log_freq=200, verbose=2):
super(TrainCallback, self).__init__(log_freq, verbose)
self.ppl = ppl
self.nll = nll
def on_train_begin(self, logs=None):
super(TrainCallback, self).on_train_begin(logs)
self.train_metrics = [
"loss", "ppl", "nll", "kl weight", "kl loss", "rec loss"
]
def on_epoch_begin(self, epoch=None, logs=None):
super(TrainCallback, self).on_epoch_begin(epoch, logs)
self.ppl.reset()
self.nll.reset()
def on_train_batch_end(self, step, logs=None):
# loss and kl weight are not accumulated
logs["kl weight"] = self.ppl.cross_entropy.kl_weight
logs["kl loss"] = self.ppl.cross_entropy.kl_loss.numpy()[0]
logs["rec loss"] = self.ppl.cross_entropy.rec_loss.numpy()[0]
super(TrainCallback, self).on_train_batch_end(step, logs)
def on_eval_begin(self, logs=None):
super(TrainCallback, self).on_eval_begin(logs)
self.eval_metrics = ["loss", "ppl", "nll"]
def on_eval_batch_end(self, step, logs=None):
super(TrainCallback, self).on_eval_batch_end(step, logs)
class LSTMEncoder(nn.Layer):
def __init__(self,
vocab_size,
embed_dim,
hidden_size,
num_layers,
init_scale=0.1,
enc_dropout=0.):
super(LSTMEncoder, self).__init__()
self.src_embedder = nn.Embedding(
vocab_size,
embed_dim,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=enc_dropout)
if enc_dropout > 0.0:
self.dropout = nn.Dropout(enc_dropout)
else:
self.dropout = None
def forward(self, src, src_length):
src_emb = self.src_embedder(src)
if self.dropout:
src_emb = self.dropout(src_emb)
enc_output, enc_final_state = self.lstm(
src_emb, sequence_length=src_length)
if self.dropout:
enc_output = self.dropout(enc_output)
enc_final_state = [
[h, c] for h, c in zip(enc_final_state[0], enc_final_state[1])
]
return enc_output, enc_final_state
class LSTMDecoderCell(nn.Layer):
def __init__(self,
num_layers,
embed_dim,
hidden_size,
latent_size,
dropout=None):
super(LSTMDecoderCell, self).__init__()
self.dropout = dropout
self.lstm_cells = nn.LayerList([
nn.LSTMCell(
input_size=embed_dim + latent_size, hidden_size=hidden_size)
for i in range(num_layers)
])
def forward(self, step_input, lstm_states, latent_z):
new_lstm_states = []
step_input = paddle.concat([step_input, latent_z], 1)
for i, lstm_cell in enumerate(self.lstm_cells):
out, new_lstm_state = lstm_cell(step_input, lstm_states[i])
if self.dropout:
step_input = self.dropout(out)
else:
step_input = out
new_lstm_states.append(new_lstm_state)
if self.dropout:
step_input = self.dropout(step_input)
out = step_input
return out, new_lstm_states
class LSTMDecoder(nn.Layer):
def __init__(self,
vocab_size,
embed_dim,
hidden_size,
latent_size,
num_layers,
init_scale=0.1,
dec_dropout=0.):
super(LSTMDecoder, self).__init__()
self.num_layers = num_layers
self.embed_dim = embed_dim
self.hidden_size = hidden_size
self.latent_size = latent_size
self.trg_embedder = nn.Embedding(
vocab_size,
embed_dim,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.output_fc = nn.Linear(
hidden_size,
vocab_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
if dec_dropout > 0.0:
self.dropout = nn.Dropout(dec_dropout)
else:
self.dropout = None
self.lstm = nn.RNN(
LSTMDecoderCell(self.num_layers, self.embed_dim, self.hidden_size,
self.latent_size, self.dropout))
def forward(self, trg, dec_initial_states, latent_z):
trg_emb = self.trg_embedder(trg)
if self.dropout:
trg_emb = self.dropout(trg_emb)
lstm_output, _ = self.lstm(
inputs=trg_emb,
initial_states=dec_initial_states,
latent_z=latent_z)
dec_output = self.output_fc(lstm_output)
return dec_output
class VAESeq2SeqModel(nn.Layer):
def __init__(self,
embed_dim,
hidden_size,
latent_size,
vocab_size,
num_layers=1,
init_scale=0.1,
PAD_ID=0,
enc_dropout=0.,
dec_dropout=0.):
super(VAESeq2SeqModel, self).__init__()
self.PAD_ID = PAD_ID
self.latent_size = latent_size
self.vocab_size = vocab_size
self.num_layers = num_layers
self.hidden_size = hidden_size
self.encoder = LSTMEncoder(vocab_size, embed_dim, hidden_size,
num_layers, init_scale, enc_dropout)
self.decoder = LSTMDecoder(vocab_size, embed_dim, hidden_size,
latent_size, num_layers, init_scale,
dec_dropout)
self.distributed_fc = nn.Linear(
hidden_size * 2,
latent_size * 2,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.fc = nn.Linear(
latent_size,
2 * hidden_size * num_layers,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
def sampling(self, z_mean, z_log_var):
"""
Reparameterization trick
"""
# By default, random_normal has mean=0 and std=1.0
epsilon = paddle.normal(shape=(z_mean.shape[0], self.latent_size))
epsilon.stop_gradient = True
return z_mean + paddle.exp(0.5 * z_log_var) * epsilon
def build_distribution(self, enc_final_state=None):
enc_hidden = [
paddle.concat(
state, axis=-1) for state in enc_final_state
]
enc_hidden = paddle.concat(enc_hidden, axis=-1)
z_mean_log_var = self.distributed_fc(enc_hidden)
z_mean, z_log_var = paddle.split(z_mean_log_var, 2, -1)
return z_mean, z_log_var
def calc_kl_dvg(self, means, logvars):
"""
Compute the KL divergence between Gaussian distribution
"""
kl_cost = -0.5 * (
logvars - paddle.square(means) - paddle.exp(logvars) + 1.0)
kl_cost = paddle.mean(kl_cost, 0)
return paddle.sum(kl_cost)
def forward(self, src, src_length, trg, trg_length):
# Encoder
_, enc_final_state = self.encoder(src, src_length)
# Build distribution
z_mean, z_log_var = self.build_distribution(enc_final_state)
# Decoder
latent_z = self.sampling(z_mean, z_log_var)
dec_first_hidden_cell = self.fc(latent_z)
dec_first_hidden, dec_first_cell = paddle.split(
dec_first_hidden_cell, 2, axis=-1)
if self.num_layers > 1:
dec_first_hidden = paddle.split(dec_first_hidden, self.num_layers)
dec_first_cell = paddle.split(dec_first_cell, self.num_layers)
else:
dec_first_hidden = [dec_first_hidden]
dec_first_cell = [dec_first_cell]
dec_initial_states = [[h, c]
for h, c in zip(dec_first_hidden, dec_first_cell)]
dec_output = self.decoder(trg, dec_initial_states, latent_z)
kl_loss = self.calc_kl_dvg(z_mean, z_log_var)
trg_mask = (self.PAD_ID != trg).astype(paddle.get_default_dtype())
return kl_loss, dec_output, trg_mask
class VAESeq2SeqInferModel(VAESeq2SeqModel):
def __init__(self,
embed_dim,
hidden_size,
latent_size,
vocab_size,
start_token=1,
end_token=2,
beam_size=1,
max_out_len=100):
self.start_token = start_token
self.end_token = end_token
self.beam_size = beam_size
self.max_out_len = max_out_len
super(VAESeq2SeqInferModel, self).__init__(embed_dim, hidden_size,
latent_size, vocab_size)
def forward(self, trg):
# Encoder
latent_z = paddle.normal(shape=(trg.shape[0], self.latent_size))
dec_first_hidden_cell = self.fc(latent_z)
dec_first_hidden, dec_first_cell = paddle.split(
dec_first_hidden_cell, 2, axis=-1)
if self.num_layers > 1:
dec_first_hidden = paddle.split(dec_first_hidden, self.num_layers)
dec_first_cell = paddle.split(dec_first_cell, self.num_layers)
else:
dec_first_hidden = [dec_first_hidden]
dec_first_cell = [dec_first_cell]
dec_initial_states = [[h, c]
for h, c in zip(dec_first_hidden, dec_first_cell)]
output_fc = lambda x: F.one_hot(
paddle.multinomial(
F.softmax(paddle.squeeze(
self.decoder.output_fc(x),[1]))),num_classes=self.vocab_size)
latent_z = nn.BeamSearchDecoder.tile_beam_merge_with_batch(
latent_z, self.beam_size)
decoder = nn.BeamSearchDecoder(
cell=self.decoder.lstm.cell,
start_token=self.start_token,
end_token=self.end_token,
beam_size=self.beam_size,
embedding_fn=self.decoder.trg_embedder,
output_fn=output_fc)
outputs, _ = nn.dynamic_decode(
decoder,
inits=dec_initial_states,
max_step_num=self.max_out_len,
latent_z=latent_z)
return outputs