forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
695 lines (621 loc) · 22 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import tkinter
from tkinter import Label, Tk, PhotoImage, Entry, LEFT, W, END, Button, E
import time
import threading
import json
import uuid
import yaml
from attrdict import AttrDict
import _locale
import jieba
import paddle
from paddlenlp.data import Vocab
from paddlenlp.transformers import position_encoding_init
from paddlenlp.utils.log import logger
from subword_nmt import subword_nmt
import websocket
open_speech = True
try:
from pyaudio import PyAudio, paInt16
except ImportError as e:
open_speech = False
logger.warning("No module named 'pyaudio', so no audio demo.")
import const
from model_demo import SimultaneousTransformerDemo
# By default, the Windows system opens the file with GBK code,
# and the subword_nmt package does not support setting open encoding,
# so it is set to UTF-8 uniformly.
_locale._getdefaultlocale = (lambda *args: ['en_US', 'utf8'])
is_win = False
if os.name == 'nt':
is_win = True
class STACLTokenizer:
"""
Jieba+BPE, and convert tokens to ids.
"""
def __init__(self, args, is_chinese):
bpe_parser = subword_nmt.create_apply_bpe_parser()
bpe_args = bpe_parser.parse_args(args=['-c', args.src_bpe_dict])
self.bpe = subword_nmt.BPE(bpe_args.codes, bpe_args.merges,
bpe_args.separator, None,
bpe_args.glossaries)
self.is_chinese = is_chinese
self.src_vocab = Vocab.load_vocabulary(
args.src_vocab_fpath,
bos_token=args.special_token[0],
eos_token=args.special_token[1],
unk_token=args.special_token[2])
self.trg_vocab = Vocab.load_vocabulary(
args.trg_vocab_fpath,
bos_token=args.special_token[0],
eos_token=args.special_token[1],
unk_token=args.special_token[2])
args.src_vocab_size = len(self.src_vocab)
args.trg_vocab_size = len(self.trg_vocab)
self.args = args
def tokenize(self, raw_string):
raw_string = raw_string.strip('\n')
if not raw_string:
return raw_string, raw_string
if self.is_chinese:
raw_string = ' '.join(jieba.cut(raw_string))
bpe_str = self.bpe.process_line(raw_string)
ids = self.src_vocab.to_indices(bpe_str.split())
return bpe_str.split(), ids
def init_model(args, init_from_params):
# Define model
args.init_from_params = init_from_params
transformer = SimultaneousTransformerDemo(
args.src_vocab_size, args.trg_vocab_size, args.max_length + 1,
args.n_layer, args.n_head, args.d_model, args.d_inner_hid, args.dropout,
args.weight_sharing, args.bos_idx, args.eos_idx, args.waitk)
# Load the trained model
assert args.init_from_params, (
"Please set init_from_params to load the infer model.")
model_dict = paddle.load(
os.path.join(args.init_from_params, "transformer.pdparams"))
# To avoid a longer length than training, reset the size of position
# encoding to max_length
model_dict["src_pos_embedding.pos_encoder.weight"] = position_encoding_init(
args.max_length + 1, args.d_model)
model_dict["trg_pos_embedding.pos_encoder.weight"] = position_encoding_init(
args.max_length + 1, args.d_model)
transformer.load_dict(model_dict)
return transformer
def post_process_seq(seq, bos_idx, eos_idx, output_bos=False, output_eos=False):
"""
Post-process the decoded sequence.
"""
eos_pos = len(seq) - 1
for i, idx in enumerate(seq):
if idx == eos_idx:
eos_pos = i
break
seq = [
idx for idx in seq[:eos_pos + 1]
if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
]
return seq
def translate(args, tokenizer, tokenized_src, transformers, waitks,
decoder_max_length, is_last, caches, bos_id, all_result):
# Set evaluate mode
for transformer in transformers:
transformer.eval()
for idx, (waitk, transformer) in enumerate(zip(waitks, transformers)):
if len(tokenized_src) < waitk or (waitk == -1 and not is_last):
continue
with paddle.no_grad():
input_src = tokenized_src
if is_last:
decoder_max_length[idx] = args.max_out_len
input_src += [args.eos_idx]
src_word = paddle.to_tensor(input_src).unsqueeze(axis=0)
finished_seq, finished_scores, cache = transformer.greedy_search(
src_word,
max_len=decoder_max_length[idx],
waitk=waitk,
caches=caches[idx],
bos_id=bos_id[idx])
caches[idx] = cache
finished_seq = finished_seq.numpy()
for beam_idx, beam in enumerate(finished_seq[0]):
if beam_idx >= args.n_best:
break
id_list = post_process_seq(beam, args.bos_idx, args.eos_idx)
if len(id_list) == 0:
continue
bos_id[idx] = id_list[-1]
word_list = tokenizer.trg_vocab.to_tokens(id_list)
for word in word_list:
all_result[idx].append(word)
res = ' '.join(word_list).replace('@@ ', '')
logger.debug('[waitk={}] {}'.format(waitk, res))
def cut_line(str, line_len):
"""
Wrap output
"""
result = []
temp = []
for idx, item in enumerate(str.split()):
temp.append(item)
if (idx + 1) % line_len == 0:
result.append(' '.join(temp))
temp = []
if len(temp) != 0:
result.append(' '.join(temp))
return '\n'.join(result)
def process(args, tokenizer, transformers, waitks):
"""
GUI and main waitk program
:param args:
:param tokenizer:
:param transformers:
:param waitks:
:return:
"""
font_align = ('Courier', 20)
font_label = ('Times', 14)
if is_win:
font_align = ('Courier', 15)
font_label = ('Times', 11)
window = Tk()
window.title("Welcome to Simultaneous Translation")
window.geometry('1200x600')
logo = PhotoImage(file='images/paddlenlp.png')
button = Label(window, image=logo, compound='center')
button.place(x=0, y=0)
# for chinese input
lbl1 = Label(
window,
text="Chinese input:",
fg="green",
font=font_label,
anchor=E,
width=28)
lbl1.place(x=0, y=60)
txt = Entry(window, font=font_align)
txt.place(x=250, y=50, width=800, height=50)
button_on = Button(window, text='REC', relief='raised', cursor="hand2")
if open_speech:
button_on.place(x=1090, y=52)
s_x, s_y = 0, 130
x, y = 250, 120
# for jieba+BPE
lbl2_s = Label(
window,
text="Jieba+BPE:",
fg="black",
font=font_label,
anchor=E,
width=28)
lbl2_s.place(x=s_x, y=s_y)
lbl2 = Label(
window, text="", font=font_align, background="pale green", anchor=E)
lbl2.place(x=x, y=y, width=800, height=50)
# for wait-1
waitnum = '1'
lbl3_s = Label(
window,
text="Simultaneous\nTranslation (wait " + waitnum + "):",
fg="red",
font=font_label,
anchor=E,
width=28)
lbl3_s.place(x=s_x, y=s_y + 70)
lbl3 = Label(window, text="", font=font_align, background="linen")
lbl3.place(x=x, y=y + 75, width=800, height=50)
# for wait-3
waitnum = '3'
lbl4_s = Label(
window,
text="Simultaneous\nTranslation (wait " + waitnum + "):",
fg="red",
font=font_label,
anchor=E,
width=28)
lbl4_s.place(x=s_x, y=s_y + 140)
lbl4 = Label(window, text="", font=font_align, background="linen")
lbl4.place(x=x, y=y + 145, width=800, height=50)
# for wait-5
waitnum = '5'
lbl5_s = Label(
window,
text="Simultaneous\nTranslation (wait " + waitnum + "):",
fg="red",
font=font_label,
anchor=E,
width=28)
lbl5_s.place(x=s_x, y=s_y + 210)
lbl5 = Label(window, text="", font=font_align, background="linen")
lbl5.place(x=x, y=y + 215, width=800, height=50)
# for wait--1
lbl6_s = Label(
window,
text="Full Sentence\nTranslation (wait -1):",
fg="blue",
font=font_label,
anchor=E,
width=28)
lbl6_s.place(x=s_x, y=s_y + 280)
lbl6 = Label(window, text="", font=font_align, background="sky blue")
lbl6.place(x=x, y=y + 285, width=800, height=50)
def set_val(event=None):
"""
Start translating
"""
global i
global caches
global bos_id
global decoder_max_length
global all_result
global is_last
global user_input_bpe
global user_input_tokenized
bpe_str, tokenized_src = tokenizer.tokenize(txt.get())
while i < len(tokenized_src):
user_input_bpe.append(bpe_str[i])
user_input_tokenized.append(tokenized_src[i])
lbl2.configure(
text=cut_line((lbl2.cget("text") + ' ' + bpe_str[i]).strip(),
20),
fg="black",
anchor=W,
justify=LEFT)
window.update()
if bpe_str[i] in ['。', '?', '!']:
is_last = True
translate(args, tokenizer, user_input_tokenized, transformers,
waitks, decoder_max_length, is_last, caches, bos_id,
all_result)
lbl3.configure(
text=cut_line(' '.join(all_result[0]).replace('@@ ', ''), 11),
fg="red",
anchor=W,
justify=LEFT)
lbl4.configure(
text=cut_line(' '.join(all_result[1]).replace('@@ ', ''), 11),
fg="red",
anchor=W,
justify=LEFT)
lbl5.configure(
text=cut_line(' '.join(all_result[2]).replace('@@ ', ''), 11),
fg="red",
anchor=W,
justify=LEFT)
lbl6.configure(
text=cut_line(' '.join(all_result[3]).replace('@@ ', ''), 11),
fg="blue",
anchor=W,
justify=LEFT)
window.update()
if is_last:
caches = [None] * len(waitks)
bos_id = [None] * len(waitks)
decoder_max_length = [1] * len(waitks)
is_last = False
user_input_bpe = []
user_input_tokenized = []
i += 1
def set_val_voice(event=None):
"""
Start translating
"""
def send_start_params(ws):
"""
Send start frame
:param websocket.WebSocket ws:
:return:
"""
req = {
"type": "START",
"data": {
"appid": const.APPID,
"appkey": const.APPKEY,
"dev_pid": const.DEV_PID,
"cuid": "yourself_defined_user_id",
"sample": 16000,
"format": "pcm"
}
}
body = json.dumps(req)
ws.send(body, websocket.ABNF.OPCODE_TEXT)
logger.info("send START frame with params:" + body)
def send_audio(ws):
"""
Send audio
:param websocket.WebSocket ws:
:return:
"""
# 160ms record
chunk_ms = 160
# 160ms * 16000 * 2bytes / 1000ms = 5120bytes
chunk_len = int(16000 * 2 / 1000 * chunk_ms)
pa = PyAudio()
stream = pa.open(
format=paInt16,
channels=1,
rate=16000,
input=True,
frames_per_buffer=chunk_len // 2)
while True:
frames = []
frame = stream.read(chunk_len // 2, exception_on_overflow=False)
frames.append(frame)
body = b''.join(frames)
if len(body) == 0:
logger.info("empty body")
continue
logger.debug("try to send audio length {}".format(len(body)))
ws.send(body, websocket.ABNF.OPCODE_BINARY)
def send_finish(ws):
"""
Send finished frame
:param websocket.WebSocket ws:
:return:
"""
req = {"type": "FINISH"}
body = json.dumps(req)
ws.send(body, websocket.ABNF.OPCODE_TEXT)
logger.info("send FINISH frame")
def close_websocket(ws_app):
if ws_app:
logger.info('close ws_app.')
send_finish(ws_app)
ws_app.close()
logger.info('ws_app closed.')
def on_open(ws):
"""
Send data frame after connected
:param websocket.WebSocket ws:
:return:
"""
def run(*args):
"""
Send data frame
:param args:
:return:
"""
send_start_params(ws)
send_audio(ws)
send_finish(ws)
logger.debug("thread terminating")
threading.Thread(target=run).start()
def on_error(ws, error):
"""
For error
:param ws:
:param error: json
:return:
"""
logger.error("error: " + str(error))
def on_close(ws):
"""
Close websocket
:param websocket.WebSocket ws:
:return:
"""
logger.info("ws close ...")
# ws.close()
def on_message(ws, message):
"""
Response from server
:param ws:
:param message: json
:return:
"""
global i
global text
global caches
global bos_id
global decoder_max_length
global all_result
global is_last
global user_input_bpe
global user_input_tokenized
global ws_app
global start_time
logger.info("Response: " + message)
message = json.loads(message)
if is_last and ws_app:
close_websocket(ws_app)
end_time = time.time()
if end_time - start_time > 10 and ws_app:
close_websocket(ws_app)
logger.info('ws_app started at: {} closed at: {}, cost {}s.'.
format(start_time, end_time, end_time - start_time))
if 'result' in message:
start_time = time.time()
text = message['result']
txt.delete(0, END)
txt.insert(0, text)
bpe_str, tokenized_src = tokenizer.tokenize(txt.get())
while i < len(tokenized_src):
user_input_bpe.append(bpe_str[i])
user_input_tokenized.append(tokenized_src[i])
lbl2.configure(
text=cut_line(
(lbl2.cget("text") + ' ' + bpe_str[i]).strip(), 20),
fg="black",
anchor=W,
justify=LEFT)
window.update()
if bpe_str[i] in ['。', '?', '!']:
is_last = True
translate(args, tokenizer, user_input_tokenized,
transformers, waitks, decoder_max_length, is_last,
caches, bos_id, all_result)
lbl3.configure(
text=cut_line(' '.join(all_result[0]).replace('@@ ',
''), 11),
fg="red",
anchor=W,
justify=LEFT)
lbl4.configure(
text=cut_line(' '.join(all_result[1]).replace('@@ ',
''), 11),
fg="red",
anchor=W,
justify=LEFT)
lbl5.configure(
text=cut_line(' '.join(all_result[2]).replace('@@ ',
''), 11),
fg="red",
anchor=W,
justify=LEFT)
lbl6.configure(
text=cut_line(' '.join(all_result[3]).replace('@@ ',
''), 11),
fg="blue",
anchor=W,
justify=LEFT)
window.update()
if is_last:
caches = [None] * len(waitks)
bos_id = [None] * len(waitks)
decoder_max_length = [1] * len(waitks)
is_last = False
user_input_bpe = []
user_input_tokenized = []
if ws_app:
close_websocket(ws_app)
i += 1
logger.info("begin")
uri = const.URI + "?sn=" + str(uuid.uuid1())
logger.info("uri is " + uri)
global start_time
start_time = time.time()
global ws_app
ws_app = websocket.WebSocketApp(
uri,
on_open=on_open,
on_message=on_message,
on_error=on_error,
on_close=on_close)
ws_app.run_forever()
def clear():
"""
Clear input and output
"""
txt.delete(0, END)
global i
global text
global caches
global bos_id
global decoder_max_length
global all_result
global is_last
global user_input_bpe
global user_input_tokenized
global ws_app
global start_time
if ws_app:
ws_app.close()
decoder_max_length = [1] * len(waitks)
caches = [None] * len(waitks)
bos_id = [None] * len(waitks)
all_result = [[], [], [], []]
i = 0
is_last = False
user_input_bpe = []
user_input_tokenized = []
start_time = 0
logger.info('CLEAR')
logger.info(f'i: {i}')
logger.info(f'caches: {caches}')
logger.info(f'bos_id: {bos_id}')
logger.info(f'decoder_max_length: {decoder_max_length}')
logger.info(f'all_result: {all_result}')
logger.info(f'is_last: {is_last}')
lbl2.configure(text="", fg="black", anchor=W, justify=LEFT)
lbl3.configure(text="", fg="red", anchor=W, justify=LEFT)
lbl4.configure(text="", fg="red", anchor=W, justify=LEFT)
lbl5.configure(text="", fg="red", anchor=W, justify=LEFT)
lbl6.configure(text="", fg="blue", anchor=W, justify=LEFT)
window.update()
txt.bind('<Return>', set_val)
button_on.bind('<Button-1>', set_val_voice)
desc1 = Label(
window,
text='使用说明:1. 在Chinese input输入中文,按【回车键】开始实时翻译,'
'遇到【。!?】结束整句,按【CLEAR】清空所有的输入和输出;',
anchor=E)
desc1.place(x=s_x + 100, y=s_y + 380)
backspace_cnt = 19
if is_win:
backspace_cnt = 15
desc2 = Label(
window,
text=' ' * backspace_cnt + '2. 按【REC】开始录音并开始实时翻译,遇到【。!?】结束整句,'
'按【CLEAR】清空所有的输入和输出。',
anchor=E)
if open_speech:
desc2.place(x=s_x + 100, y=s_y + 410)
button_clear = Button(
window, text='CLEAR', relief="raised", cursor="hand2", command=clear)
button_clear.place(x=x + 840, y=y + 380)
window.mainloop()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
default="./transformer_demo.yaml",
type=str,
help="Path of the config file. ")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
yaml_file = args.config
with open(yaml_file, 'rt') as f:
args = AttrDict(yaml.safe_load(f))
if args.device == 'gpu':
place = "gpu:0"
elif args.device == 'xpu':
place = "xpu:0"
elif args.device == 'cpu':
place = "cpu"
paddle.set_device(place)
tokenizer = STACLTokenizer(args, is_chinese=True)
waitks = [1, 3, 5, -1]
transformers = []
for waitk in waitks:
transformers.append(init_model(args, f'models/nist_wait_{waitk}'))
logger.info(f'Loaded wait_{waitk} model.')
# for decoding max length
decoder_max_length = [1] * len(waitks)
# for decoding cache
caches = [None] * len(waitks)
# for decoding start token id
bos_id = [None] * len(waitks)
# for result
all_result = [[], [], [], []]
# current source word index
i = 0
# for decoding: is_last=True, max_len=256
is_last = False
# subword after bpe
user_input_bpe = []
# tokenized id
user_input_tokenized = []
# for stream input
text = ''
# websocket app
ws_app = None
# start time
start_time = 0
process(args, tokenizer, transformers, waitks)