forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
82 lines (66 loc) · 2.49 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import numpy as np
from paddlenlp.utils.log import logger
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--similar_text_pair", type=str, default='', help="The full path of similat pair file")
parser.add_argument("--recall_result_file", type=str, default='', help="The full path of recall result file")
parser.add_argument("--recall_num", type=int, default=10, help="Most similair number of doc recalled from corpus per query")
args = parser.parse_args()
# yapf: enable
def recall(rs, N=10):
"""
Ratio of recalled Ground Truth at topN Recalled Docs
>>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]]
>>> recall(rs, N=1)
0.333333
>>> recall(rs, N=2)
>>> 0.6666667
>>> recall(rs, N=3)
>>> 1.0
Args:
rs: Iterator of recalled flag()
Returns:
Recall@N
"""
recall_flags = [np.sum(r[0:N]) for r in rs]
return np.mean(recall_flags)
if __name__ == "__main__":
text2similar = {}
with open(args.similar_text_pair, 'r', encoding='utf-8') as f:
for line in f:
text, similar_text = line.rstrip().split("\t")
text2similar[text] = similar_text
rs = []
with open(args.recall_result_file, 'r', encoding='utf-8') as f:
relevance_labels = []
for index, line in enumerate(f):
if index % args.recall_num == 0 and index != 0:
rs.append(relevance_labels)
relevance_labels = []
text, recalled_text, cosine_sim = line.rstrip().split("\t")
if text == recalled_text:
continue
if text2similar[text] == recalled_text:
relevance_labels.append(1)
else:
relevance_labels.append(0)
recall_N = []
for topN in (10, 50):
R = round(100 * recall(rs, N=topN), 3)
recall_N.append(str(R))
print("\t".join(recall_N))