-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmake_plots.m
222 lines (164 loc) · 4.69 KB
/
make_plots.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
function make_plots( E , G , PI , w , s , g )
% MAKE_PLOTS plots average DMD and OMD eigenvalues, growth rate errors and
% percentage differences between the two methods
%
% Inputs:
%
% E = DMD and OMD eigenvalues
% G = DMD and OMD growth rate errors
% PI = percentage difference between DMD and OMD
%
% Plots:
%
% i) If PI is smaller than 2x2 then eigenvalues corresponding to
% frequency w(1) and noise levels s(i) are plotted
%
% ii) If PI is at least 2x2 contour plots of G.DMD, G.OMD and PI are
% given
%
% Author A. Wynn - 20 June 2012
close all
% PI smaller than 2x2
if (length(s)<2) || (length(w)<2)
figure(1); clf;
hold on
% plot eigenvalues
for i=1:length(s)
plot(real(E.DMD{1,i}),imag(E.DMD{1,i}),...
'o',...
'MarkerSize',8,...
'MarkerFaceColor',[1 1 1],...
'MarkerEdgeColor',[0.1 0.1 0.1]);
plot(real(E.OMD{1,i}),imag(E.OMD{1,i}),...
'o',...
'MarkerSize',8,...
'MarkerFaceColor',[0.5 0.5 0.5],...
'MarkerEdgeColor',[0.1 0.1 0.1]);
%plot true eigenvalues (on first time to get legend correct)
if ( i == 1 )
plot([g g],[w -w],...
'o',...
'MarkerSize',8,...
'MarkerFaceColor','k',...
'MarkerEdgeColor','k');
end
end
% format axes
xlabel( '$\mathrm{Re}(\lambda)$',...
'Interpreter','latex',...
'FontSize',16);
ylabel('$\mathrm{Im}(\lambda)$',...
'Interpreter','latex',...
'FontSize',16);
h = gca;
set(h,...
'FontSize',16,...
'Ylim',[-w-0.5,w+0.75],...
'Box','Off');
% format legend
legend( '$\lambda_i^\mathrm{DMD}$',...
'$\lambda_i^\mathrm{OMD}$',...
'$\lambda_\mathrm{true}$');
h = legend;
set(h,...
'Interpreter','latex',...
'FontSize',16,...
'Orientation','Horizontal');
% if PI larger than 2x2 plot contours
else
%suppress matlab contourf warnings
%resulting from NaN inputs
warning('off',...
'MATLAB:hg:patch:PatchFaceVertexCDataLengthMustEqualVerticesLength');
%---------------------------------------
%---------------------------------------
% DMD growth rate errors
% contour levels (log plot)
c = [0.0002 0.0005 0.001 0.002 0.005 0.01];
figure(2); clf;
% plot countor of DMD errors
contourf(s,w,log10(G.DMD))
% colour settings
shading flat
c1=colorbar;
colormap(flipud(gray))
caxis([log10(c(1)-1e-8) log10(c(end)+1e-5)])
set(c1,...
'YTick',log10(c(1:end)),...
'YTickLabel',c(1:end))
set(gca,...
'FontSize',16)
% labels
xlabel( 'noise covariance $\sigma$',...
'Interpreter','Latex',...
'FontSize',16)
ylabel( 'temporal frequency $\omega$',...
'Interpreter','Latex',...
'FontSize',16)
ylabel(c1,...
'$\epsilon_{\rm{DMD}}$',...
'Interpreter','Latex',...
'FontSize',16);
h = gca;
set(h,...
'Fontsize',16);
%---------------------------------------
%---------------------------------------
% contour plot of OMD growth rate errors
% contour levels (log plot)
c = [0.0002 0.0005 0.001 0.002 0.005 0.01];
figure(3); clf;
% plot countor of DMD errors
contourf(s,w,log10(G.OMD))
% colour settings
shading flat
c1=colorbar;
colormap(flipud(gray))
caxis([log10(c(1)-1e-8) log10(c(end)+1e-5)])
set(c1,...
'YTick',log10(c(1:end)),...
'YTickLabel',c(1:end))
set(gca,...
'FontSize',18)
% labels
xlabel( 'noise covariance $\sigma$',...
'Interpreter','Latex',...
'FontSize',16)
ylabel( 'temporal frequency $\omega$',...
'Interpreter','Latex',...
'FontSize',16)
ylabel(c1,...
'$\epsilon_{\rm{OMD}}$',...
'Interpreter','Latex',...
'FontSize',16);
h = gca;
set(h,...
'Fontsize',16);
%---------------------------------------
%---------------------------------------
% percentage improvement of OMD over DMD
figure(4); clf;
% contour levels
c = 0:5:35;
% plot contour of percentage improvment
contourf(s,w,PI,c);
% contour settings
shading flat
c1 = colorbar;
colormap(flipud(gray))
% labels
ylabel(c1,...
'\% improvement $p_\epsilon$',...
'Interpreter','Latex',...
'Fontsize',16);
xlabel( 'noise covariance $\sigma$',...
'Interpreter','Latex',...
'Fontsize',16);
ylabel( 'temporal frequency $\omega$',...
'Interpreter','Latex',...
'Fontsize',16);
h = gca;
set(h,...
'Fontsize',16);
end
end