-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_broadcast.py
659 lines (506 loc) · 22.3 KB
/
model_broadcast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import os, sys, json, random, base64, copy, gc, shutil
from PIL import Image
import numpy as np
import torch
from torch import autocast
# from transformers import CLIPImageProcesssor
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionImg2ImgPipeline,
DPMSolverMultistepScheduler,
StableDiffusionInstructPix2PixPipeline,
EulerAncestralDiscreteScheduler
)
# os.environ["CURL_CA_BUNDLE"]=""
class ModelBroadcast:
def __init__(self, api_token, test=False):
self.test = test
self.api_token = api_token
self.broadcast = {
"api_id": api_token,
"models": {
'CompVis/stable-diffusion-v1.4' : {
"input": {
"prompt": "<lstr>",
"iters": "<int>"
},
"func": self.run_sd if not self.test else self.__test_placeholder,
"output": {
"images_encoded": "<List<b64>>"
},
"desc": """
This is the CompVis/stable-diffusion-1.4 model
prompt <lstr> -> The prompt of what you are trying to generate
iters <int> -> The number of images you wish to generate
"""
},
'wavymulder/Analog-Diffusion' : {
"input": {
"prompt": "<lstr>",
"iters": "<int>"
},
"func": self.run_analog_diffusion if not self.test else self.__test_placeholder,
"output": {
"images_encoded": "<List<b64>>"
},
"desc": """
Analog DIffusion by Wavy Mulder \n \
prompt <lstr> -> The prompt of what you are trying to generate
iters <int> -> The number of images you wish to generate
"""
},
'runwayml/stable-diffusion-inpainting' : {
"input": {
"prompt": "<lstr>",
"iters": "<int>",
"image_encoded": "<b64>",
"image_mask_encoded": "mask<b64>"
},
"func": self.run_sd_inpainting if not self.test else self.__test_placeholder,
"output": {
"images_encoded": "list<<b64>>"
},
"desc": """
this is the runwayml/stable-diffusion-inpainting model
prompt <lstr> -> the prompt of what you are trying to generate
iters <int> -> the number of images you wish to generate
"image_encoded": "<b64>"
"image_mask_encoded": "mask<b64>"
"""
},
'runwayml/stable-diffusion-inpainting/outpainting_addon' : {
"input": {
"prompt": "<lstr>",
"iters": "<int>",
"image_encoded": "<b64>",
},
"func": self.run_sd_outpainting if not self.test else self.__test_placeholder,
"output": {
"images_encoded": "list<<b64>>"
},
"desc": """
this is the runwayml/stable-diffusion-inpainting/outpainting_addon model. Given a
512x512 image, it sections and outpaints the image into a 1024x1024 image based on the prompt
prompt <lstr> -> the prompt of what you are trying to generate
iters <int> -> the number of images you wish to generate
"image_encoded": "<b64>"
"""
},
'CompVis/stable-diffusion-v1.4/img2img_addon' : {
"input": {
"prompt": "<lstr>",
"iters": "<int>",
"image_encoded": "<b64>",
},
"func": self.run_sd_img2img if not self.test else self.__test_placeholder,
"output": {
"images_encoded": "list<<b64>>"
},
"desc": """
this is the compvis/stable-diffusion-1.4/img2img_adddon model
"prompt": "<lstr>",
"iters": "<int>",
"image_encoded": "<b64>",
"""
},
'timbroooks/instruct-pix2pix' : {
"input": {
"prompt": "<lstr>",
"iters": "<int>",
"image_encoded": "<b64>",
},
"func": self.run_instructpix2pix if not self.test else self.__test_placeholder,
"output": {
"images_encoded": "list<<b64>>"
},
"desc": """
this is the timbrooks/instruct-pix2pix model. It performs better than img2img in
understanding prompts and their context in the aimge. <paper link>
"prompt": "<lstr>",
"iters": "<int>",
"image_encoded": "<b64>",
"""
},
'github/xinntao/Real-ESRGAN' : {
"input": {
"image_encoded": "<b64>",
"toggle_face_enhance": "<bool>",
},
"func": self.run_realesrgan if not self.test else self.__test_placeholder,
"output": {
"image_encoded": "list<<b64>>"
},
"desc": """
This is the github/xinntao/Real-ESRGAN model
"image_encoded": "<b64>",
"toggle_face_enhance": "<bool>",
"""
},
'github/danielgatis/rembg' : {
"input": {
"image_encoded": "<b64>",
},
"func": self.run_rembg if not self.test else self.__test_placeholder,
"output": {
"image_encoded": "list<<b64>>"
},
"desc": """
This is the danielgatis/rembg model. It removes the background from images. Takes
one image, returns one.
"image_encoded": "<b64>",
"""
}
}
}
def __test_placeholder(self, _json):
#just return an encoded image to not stress system during production
# with open("format", "w") as f:
# f.write(f"{_json}/n ")
image_encoded= _json["image_encoded"]
iters = None
try:
iters = _json["iters"]
except:
iters = 3
images = []
with open(f"placeholder.jpg", "rb") as f:
data = f.read()
base64_data = "data:image/jpeg;base64," + base64.b64encode(data).decode("utf-8")
images.append(base64_data)
# images.append("data:image/jpeg;base64," + image_encoded)
print("Loaded images")
return images*3
def _get_img_section(self, xs,xe,ys,ye,img,sdim):
im = np.zeros((sdim, sdim,3))
im_mask = np.zeros((sdim, sdim,3))
im_mask[:, :] = (255,255,255)
if (xs,xe,ys,ye) == (0, 256, 0, 256):
im[256: , 256: ] = img[xs:xe, ys:ye]
im_mask[256:, 256: ] = (0,0,0)
if (xs,xe,ys,ye) == (0, 256, 256,512):
im[256: , :256 ] = img[xs:xe, ys:ye]
im_mask[256:, :256 ] = (0,0,0)
if (xs,xe,ys,ye) == (256, 512, 0, 256):
im[:256 , 256: ] = img[xs:xe, ys:ye]
im_mask[:256, 256: ] = (0,0,0)
if (xs,xe,ys,ye) == (256, 512, 256,512):
im[:256 , :256 ] = img[xs:xe, ys:ye]
im_mask[:256, :256 ] = (0,0,0)
return im, im_mask
def _enlarge_512(self, pipe, prompt, image_fname):
im = Image.open(image_fname)
im_arr = np.array(im)
im_arr = im_arr[:, :, :3]
def run_inpaint(im, im_mask, prompt):
with autocast("cuda"):
#The mask structure is white for inpainting and black for keeping as is
image = pipe(prompt=prompt, image=im, mask_image=im_mask).images[0]
return np.array(image)
final_im = np.zeros((1024,1024,3))
sections = [
[0,256,0,256],
[0,256,256,512],
[256,512,0,256],
[256,512,256,512],
]
for xs,xe,ys,ye in sections:
im, im_mask = self._get_img_section(xs, xe, ys, ye, im_arr, 512)
large_im = run_inpaint(Image.fromarray(im.astype("uint8")),
Image.fromarray(im_mask.astype("uint8")), prompt)
final_im[xs*2: xe*2, ys*2:ye*2] = large_im[:,:]
return final_im
def get_desc(self):
desc = copy.deepcopy(self.broadcast)
for k in desc["models"].keys():
del desc["models"][k]["func"]
return desc
def init_sd(self):
model_id = "C:\\Users\\Admin\\.cache\\huggingface\\diffusers\\models--CompVis--stable-diffusion-v1-4\\snapshots\\2880f2ca379f41b0226444936bb7a6766a227587"
device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
revision="fp16",
safety_checker= None
).to(device)
pipe.enable_attention_slicing()
return pipe
def init_sd_analog(self):
model_id = "C:\\Users\\Admin\\.cache\\huggingface\\diffusers\\models--wavymulder--Analog-Diffusion\\snapshots\\f8dd6d9fab77a226582695c101eab04841e3cd4b"
device = "cuda"
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
scheduler=scheduler,
# revision="fp16",
safety_checker= None
)
pipe = pipe.to(device)
pipe.enable_attention_slicing()
return pipe
def init_sd_inpainting(self):
device = "cuda"
model_id = "C:\\Users\\Admin\\.cache\\huggingface\\diffusers\\models--runwayml--stable-diffusion-inpainting\\snapshots\\afeee10def38be19995784bcc811882409d066e5"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
).to(device)
pipe.enable_attention_slicing()
return pipe
def init_sd_img2img(self):
model_id = "C:\\Users\\Admin\\.cache\\huggingface\\diffusers\\models--CompVis--stable-diffusion-v1-4\\snapshots\\2880f2ca379f41b0226444936bb7a6766a227587"
device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
revision="fp16",
).to(device)
pipe.enable_attention_slicing()
return pipe
def init_instructpix2pix(self):
model_id = "C:\\Users\\Admin\\.cache\\huggingface\\diffusers\\\\models--timbrooks--instruct-pix2pix\\snapshots\\93224554bd65f19b6f0c99cbcce3a4ac59bb6382"
device = "cuda"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id,
torch_dtype=torch.float16, safety_checker=None)
pipe.to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_attention_slicing()
return pipe
def init_sd_outpainting(self):
return self.init_sd_inpainting()
def run_sd(self,_json):
pipe = self.init_sd()
prompt = _json["prompt"].strip()
iters = _json["iters"]
folder_name = prompt.replace(" ", "_")
_dir = f'{random.randint(0,1000000)}_{folder_name}_sd'
os.mkdir(_dir)
with autocast("cuda"):
print("in cuda")
for i in range(int(iters)):
seed = random.randrange(1000000000)
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt,
generator=generator,
guidance_scale=7.5
)
print("image generated")
images["images"][0].save(f"{_dir}\\{i}_{seed}.jpg")
pipe = None
gc.collect()
torch.cuda.empty_cache()
images_encoded = self._get_encoded_images_from_dir(_dir)
# os.rmdir(_dir)
shutil.rmtree(_dir)
return images_encoded
def run_analog_diffusion(self,_json):
pipe = self.init_sd_analog()
prompt = _json["prompt"].strip()
iters = _json["iters"]
folder_name = prompt.replace(" ", "_")
_dir = f'{random.randint(0,1000000)}_analog_{folder_name}_sd'
os.mkdir(_dir)
with autocast("cuda"):
print("in cuda")
for i in range(int(iters)):
seed = random.randrange(1000000000)
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt,
generator=generator,
guidance_scale=7.5
)
print("image generated")
images["images"][0].save(f"{_dir}\\{i}_{seed}.jpg")
pipe = None
gc.collect()
torch.cuda.empty_cache()
images_encoded = self._get_encoded_images_from_dir(_dir)
# os.rmdir(_dir)
shutil.rmtree(_dir)
return images_encoded
def run_sd_inpainting(self, _json):
pipe = self.init_sd_inpainting()
prompt = _json["prompt"].strip()
iters = _json["iters"]
image_encoded = _json["image_encoded"]
image_mask_encoded = _json["image_mask_encoded"]
folder_name = prompt.replace(" ", "_")
_dir = f'{random.randint(0,1000000)}_{folder_name}_sd_inpainting'
os.mkdir(_dir)
input_image_path = f"{_dir}/image.png"
input_mask_image_path = f"{_dir}/image_mask.png"
image_bin = base64.b64decode(image_encoded)
image_mask_bin = base64.b64decode(image_mask_encoded)
#save images to files, then read them in from PIL.Image.open
with open(input_image_path, "wb") as f:
f.write(image_bin)
with open(input_mask_image_path, "wb") as f:
f.write(image_mask_bin)
image = Image.open(input_image_path)
mask_image = Image.open(input_mask_image_path)
mask_image = mask_image.resize((512,512))
with autocast("cuda"):
for i in range(int(iters)):
seed = random.randrange(1000000000)
generator = torch.Generator("cuda").manual_seed(seed)
image = pipe(prompt=prompt,
image=image,
mask_image=mask_image,
generator=generator,
guidance_scale=7.5
).images[0]
image.save(f"{_dir}\\{i}_{seed}.jpg")
pipe = None
gc.collect()
torch.cuda.empty_cache()
os.remove(input_image_path)
os.remove(input_mask_image_path)
images_encoded = self._get_encoded_images_from_dir(_dir)
# os.rmdir(_dir)
shutil.rmtree(_dir)
return images_encoded
def run_sd_img2img(self, _json):
pipe = self.init_sd_img2img()
prompt = _json["prompt"].strip()
iters = _json["iters"]
image_encoded = _json["image_encoded"]
folder_name = prompt.replace(" ", "_")
_dir = f'{random.randint(0,1000000)}_{folder_name}_sdimg2img'
os.mkdir(_dir)
#save images to files, then read them in from PIL.Image.open
image_bin = base64.b64decode(image_encoded)
input_image_path = f"{_dir}/image.jpg"
with open(input_image_path, "wb") as f:
f.write(image_bin)
image = Image.open(input_image_path).convert("RGB")
with autocast("cuda"):
for i in range(int(iters)):
seed = random.randrange(1000000000)
generator = torch.Generator("cuda").manual_seed(seed)
image = pipe(prompt=prompt,
generator=generator, image=image, strength=0.7, safety_checker=None ).images[0]
image.save(f"{_dir}\\{i}_{seed}.jpg")
pipe = None
gc.collect()
torch.cuda.empty_cache()
os.remove(input_image_path)
images_encoded = self._get_encoded_images_from_dir(_dir)
# os.rmdir(_dir)
shutil.rmtree(_dir)
return images_encoded
def run_instructpix2pix(self, _json):
pipe = self.init_instructpix2pix()
prompt = _json["prompt"].strip()
iters = _json["iters"]
image_encoded = _json["image_encoded"]
folder_name = prompt.replace(" ", "_")
_dir = f'{random.randint(0,1000000)}_{folder_name}_pix2pix'
os.mkdir(_dir)
#save images to files, then read them in from PIL.Image.open
image_bin = base64.b64decode(image_encoded)
input_image_path = f"{_dir}/image.jpg"
with open(input_image_path, "wb") as f:
f.write(image_bin)
image = Image.open(input_image_path).convert("RGB")
with autocast("cuda"):
for i in range(int(iters)):
seed = random.randrange(1000000000)
generator = torch.Generator("cuda").manual_seed(seed)
image = pipe(prompt=prompt, image=image, generator=generator, num_inference_steps=30, image_guidance_scale=1 ).images[0]
image.save(f"{_dir}\\{i}_{seed}.jpg")
pipe = None
gc.collect()
torch.cuda.empty_cache()
os.remove(input_image_path)
images_encoded = self._get_encoded_images_from_dir(_dir)
# os.rmdir(_dir)
shutil.rmtree(_dir)
return images_encoded
def run_sd_outpainting(self, _json):
pipe = self.init_sd_outpainting()
prompt = _json["prompt"].strip()
iters = int(_json["iters"])
image_encoded = _json["image_encoded"]
res = []
folder_name = prompt.replace(" ", "_")
_dir = f'{random.randint(0,1000000)}_{folder_name}_sd_outpainting'
os.mkdir(_dir)
image_bin = base64.b64decode(image_encoded)
input_image_path = f"{_dir}/image.png"
#save images to files, then read them in from PIL.Image.open
with open(input_image_path, "wb") as f:
f.write(image_bin)
for i in range(iters):
enlarged_image = self._enlarge_512(pipe, prompt, input_image_path)
Image.fromarray(enlarged_image.astype("uint8")).save(f"{_dir}\\big_outpainting_{i}.jpg")
# os.remove(f"{_dir}\\image.png")
pipe = None
gc.collect()
torch.cuda.empty_cache()
os.remove(input_image_path)
images_encoded = self._get_encoded_images_from_dir(_dir)
# os.rmdir(_dir)
shutil.rmtree(_dir)
return images_encoded
def run_realesrgan(self, _json):
realesrgan_path = "C:\\Users\\Admin\\Desktop\\SD\\Real-ESRGAN"
# realesrgan_exec_path = f"{realesrgan_path}\\inference_realesrgan.py"
out_path = " C:\\Users\\Admin\\Desktop\\Lightbox\\be\\main_be"
image_encoded= _json["image_encoded"]
toggle_face_enhance= _json["toggle_face_enhance"]
#temp switch to esrgan folder
curr_dir = os.getcwd()
print(curr_dir)
os.chdir(realesrgan_path)
im_name = f"{random.randint(0,100000)}_esrgan"
input_image_path = f"{im_name}.jpg"
output_image_path = f"{im_name}_out.jpg"
image_bin = base64.b64decode(image_encoded)
with open(input_image_path, "wb") as f:
f.write(image_bin)
if toggle_face_enhance:
os.system(f"python inference_realesrgan.py -n RealESRGAN_x4plus -i {input_image_path} -o {out_path} --face_enhance")
else:
os.system(f"python inference_realesrgan.py -n RealESRGAN_x4plus -i {input_image_path} -o {out_path}")
os.chdir(curr_dir)
transformed_img = None
with open(output_image_path, "rb") as f:
data = f.read()
transformed_img = "data:image/png;base64," + base64.b64encode(data).decode("utf-8")
print(transformed_img)
os.remove(input_image_path)
os.remove(output_image_path)
return [transformed_img]
def run_rembg(self, _json):
image_encoded= _json["image_encoded"]
im_name = f"{random.randint(0,100000)}_rembg"
input_image_path = f"{im_name}.jpg"
output_image_path = f"{im_name}_out.jpg"
image_bin = base64.b64decode(image_encoded)
with open(input_image_path, "wb") as f:
f.write(image_bin)
os.system(f"rembg i -m u2net {input_image_path} {output_image_path}")
transformed_img = None
with open(output_image_path, "rb") as f:
data = f.read()
transformed_img = "data:image/jpeg;base64," + base64.b64encode(data).decode("utf-8")
os.remove(output_image_path)
os.remove(input_image_path)
return [transformed_img]
def _get_encoded_images_from_dir(self, _dir):
images_encoded = []
for _, _, filelist in os.walk(_dir):
for fname in filelist:
if fname.endswith(".jpg"):
filepath = os.path.join(_dir, fname)
with open(filepath, "rb") as f:
data = f.read()
base64_data = "data:image/jpeg;base64," + base64.b64encode(data).decode("utf-8")
images_encoded.append(base64_data)
return images_encoded
#clean up (delete folder)