-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircular_search.py
404 lines (337 loc) · 13.4 KB
/
circular_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import numpy as np
import csv
import sys
import matplotlib.pyplot as plt
def convert_file2_matrix(raster_file,file_range):
timestamp = []
lat = []
lon = []
alt= []
flag = []
P_el = []
P_az = []
signal = []
file_name = raster_file
n=0
qs_file = open(file_name)
csv_file = csv.reader(qs_file,delimiter=',')
for row in csv_file:
if row[0][0] != '%':
timestamp.append(row[0])
lat.append(row[1])
lon.append(row[2])
alt.append(row[3])
flag.append(row[4])
P_az.append(row[5])
P_el.append(row[6])
signal.append(row[7])
del flag[0]
del signal[0]
del P_az[0]
del P_el[0]
signal2 = []
az2 = []
el2 = []
for i in range(len(flag)):
signal[i]=float(signal[i])
P_az[i]=float(P_az[i])
P_el[i]=float(P_el[i])
z_val = list(zip(flag,signal,P_az,P_el))
val = []
val_az = []
val_el = []
count = 0
j = z_val[0][0]
for i in z_val:
if i[0] == j:
val.append(i[1])
val_az.append(i[2])
val_el.append(i[3])
else:
signal2.append(list(val))
az2.append(list(val_az))
el2.append(list(val_el))
val[:]=[]
val_az[:]=[]
val_el[:]=[]
j = i[0]
val.append(i[1])
val_az.append(i[2])
val_el.append(i[3])
signal2.append(list(val))
az2.append(list(val_az))
el2.append(list(val_el))
for i in range(len(az2)):
if i == 0:
continue
if i%2 == 0:
az2[i] = az2[i][::-1]
signal2[i] = signal2[i][::-1]
el2[i] = el2[i][::-1]
for x in range(len(signal2)):
del signal2[x][file_range:]
for x in range(len(az2)):
del az2[x][file_range:]
for x in range(len(el2)):
del el2[x][file_range:]
signal2 = np.array(signal2,dtype=float)
az2=np.array(az2,dtype=float)
el2=np.array(el2,dtype=float)
area = signal2.shape
rt_data = np.zeros((3,area[0],area[1]))
rt_data[0,:,:] = az2
rt_data[1,:,:] = el2
rt_data[2,:,:] = signal2
with open("output/signal.csv",'w') as f:
wr = csv.writer(f)
for i in range(len(signal2)):
wr.writerow(signal2[i])
with open("output/az.csv",'w') as f:
wr = csv.writer(f)
for i in range(len(az2)):
wr.writerow(az2[i])
with open("output/el.csv",'w') as f:
wr = csv.writer(f)
for i in range(len(el2)):
wr.writerow(el2[i])
qs_file.close()
return rt_data
class maxima_search():
def __init__(self,rt_data,start):
self.rt_data = rt_data
self.start = start
self.step_angle = 10
self.rad_max = 40
self.rad_min = 5
self.x_max = rt_data[2,:,:].shape[0]
self.x_min = 0
self.y_max = rt_data[2,:,:].shape[1]
self.y_min = 0
self.ff_radius = 100
self.dist = 0
self.az_min,self.az_max = self.find_ranges(self.rt_data[0,:,:])
self.el_min,self.el_max = self.find_ranges(self.rt_data[1,:,:].transpose())
self.azimuth = rt_data[0,:,:]
self.elevation = rt_data[1,:,:]
self.saved_path= []
def find_ranges(self,matrix):
min_val = np.min(matrix[0])
max_val = np.max(matrix[0])
for x in range(len(matrix)):
minima = np.min(matrix[x])
maxima = np.max(matrix[x])
if min_val < minima:
min_val = minima
if max_val < maxima:
max_val = maxima
return min_val,max_val
def get_path_cricular2(self,center,rad,step):
path = []
start = (center[0] + rad, center[1])
angles = np.linspace(0,360,num = int(360/step)+1)
for ang in angles:
curr_x = (rad*np.cos(np.deg2rad(ang)) + center[0])
curr_y = (rad*np.sin(np.deg2rad(ang)) + center[1])
if (curr_x >= self.az_max) or (curr_x < self.az_min):
continue
if (curr_y >= self.el_max) or (curr_y < self.el_min):
continue
path.append((curr_x,curr_y))
return path
def reverse_lookup(self,az,el):
curr_x = 0
curr_y = 0
#To conduct search at the center of the data
#instead of the edge to avoid any errors
search_line_az = int(self.azimuth.shape[0]/2)
search_line_el = int(self.azimuth.shape[1]/2)
min_diff = np.absolute(az - self.azimuth[0,0])
for i in range(self.azimuth.shape[1]):
#diff = np.absolute(az - self.azimuth[0,i])
diff = np.absolute(az - self.azimuth[search_line_az,i])
if diff < min_diff:
min_diff = diff
curr_y = i
min_diff = np.absolute(el - self.elevation[0,0])
for i in range(self.elevation.shape[0]):
#diff = np.absolute(el - self.elevation[i,0])
diff = np.absolute(el - self.elevation[i,search_line_el])
if diff < min_diff:
min_diff = diff
curr_x = i
return (curr_x,curr_y)
def convert_angular_path_to_coord(self,path):
temp = []
for p in path:
temp.append(self.reverse_lookup(p[0],p[1]))
return temp
def find_peak(self,radius,center):
signal = self.rt_data[2,:,:]
plot_signal = np.zeros(signal.shape)
plot_signal2 = np.zeros(signal.shape)
plot_signal2[:] = signal
maxima = False
curr_x = center[0]
curr_y = center[1]
center_signal_val = signal[center[0],center[1]]
curr_x = center[0]
curr_y = center[1]
self.saved_path.append((self.rt_data[0,curr_x,curr_y],self.rt_data[1,curr_x,curr_y]))
k = 0
radii = np.linspace(radius,0.2,5)
for curr_radius in radii:
maxima = False
while(not(maxima)):
print("Itr!")
k = k+1
path = self.get_path_cricular2((self.rt_data[0,curr_x,curr_y],self.rt_data[1,curr_x,curr_y]),curr_radius,self.step_angle)
for p in path:
self.saved_path.append(p)
path = self.convert_angular_path_to_coord(path)
self.dist += self.get_search_distance((curr_x,curr_y),path)
#Now go through all the signal values in path
max_signal_val = signal[path[0][0],path[0][1]]
max_signal_pos = (path[0][0],path[0][1])
for p in path:
curr_signal_val = signal[p[0],p[1]]
if curr_signal_val > max_signal_val:
max_signal_val = curr_signal_val
max_signal_pos = (p[0],p[1])
print('Max Signal on circumference:{} , Signal at center:{}'.format(max_signal_val,center_signal_val))
if max_signal_val < center_signal_val:
maxima = True
max_signal_pos = (curr_x,curr_y)
max_signal_val = center_signal_val
else:
curr_x = max_signal_pos[0]
curr_y = max_signal_pos[1]
center_signal_val = max_signal_val
print(max_signal_pos)
###This part is for visualizing maxima search
plot_signal[:] = signal
for p in path:
plot_signal[p[0],p[1]] = 1
plot_signal[max_signal_pos[0],max_signal_pos[1]]=1
y = [p[0] for p in path]
x = [p[1] for p in path]
plt.plot(x,y,'o',color='red',markersize=1)
level = np.linspace(-75,-11,120)
cs = plt.contourf(plot_signal2,levels=level,extend = 'max')
plt.savefig("./output/DFS/fig_{}".format(k))
plt.show(block=False)
plt.pause(0.5)
plot_signal = np.zeros(signal.shape)
plot_signal[:] = signal
###
#return max_signal_val,max_signal_pos,self.dist
return max_signal_val,max_signal_pos,self.dist
def find_beam_width1(self,max_signal_val,max_signal_pos):
signal = self.rt_data[2,:,:]
center = max_signal_pos
halfpower = False #Flag indicating half power point found or not
halfpower_val = max_signal_val - 3 #This represents -3 db fall in signal level
direction = ['up','down','right','left']
direction_coordinates = []
for d in direction:
halfpower = False
if d == 'up':
next_point_x,next_point_y = center[0],center[1]+1
while(not(halfpower)):
signal_at_next = signal[next_point_x,next_point_y]
if signal_at_next <= halfpower_val:
halfpower = True
direction_coordinates.append((next_point_x,next_point_y))
next_point_y = next_point_y + 1
if d == 'down':
next_point_x,next_point_y = center[0],center[1]-1
while(not(halfpower)):
signal_at_next = signal[next_point_x,next_point_y]
if signal_at_next <= halfpower_val:
halfpower = True
direction_coordinates.append((next_point_x,next_point_y))
next_point_y = next_point_y - 1
if d == 'right':
next_point_x,next_point_y = center[0]+1,center[1]
while(not(halfpower)):
signal_at_next = signal[next_point_x,next_point_y]
if signal_at_next <= halfpower_val:
halfpower = True
direction_coordinates.append((next_point_x,next_point_y))
next_point_x = next_point_x + 1
if d == 'left':
next_point_x,next_point_y = center[0]-1,center[1]
while(not(halfpower)):
signal_at_next = signal[next_point_x,next_point_y]
if signal_at_next <= halfpower_val:
halfpower = True
direction_coordinates.append((next_point_x,next_point_y))
next_point_x = next_point_x - 1
halfpower_az1 = direction_coordinates[3]
halfpower_az2 = direction_coordinates[2]
halfpower_el1 = direction_coordinates[1]
halfpower_el2 = direction_coordinates[0]
#####################
print(direction_coordinates)
# print(self.rt_data[0,halfpower_az2[0],halfpower_az2[1]])
# print(self.rt_data[0,halfpower_az1[0],halfpower_az1[1]])
# print(self.rt_data[2,halfpower_az2[0],halfpower_az2[1]])
# print(self.rt_data[2,halfpower_az1[0],halfpower_az1[1]])
#####################
beam_width_az = self.rt_data[1,halfpower_az2[0],halfpower_az2[1]] - self.rt_data[1,halfpower_az1[0],halfpower_az1[1]]
beam_width_el = self.rt_data[0,halfpower_el2[0],halfpower_el2[1]] - self.rt_data[0,halfpower_el1[0],halfpower_el1[1]]
return beam_width_az,beam_width_el
def confirm_maxima(self):
signal = self.rt_data[2,:,:]
val = signal[0,0]
row,col = 0,0
x,y = signal.shape[0],signal.shape[1]
for i in range(x):
for j in range(y):
cur_val = signal[i,j]
if cur_val > val:
val = cur_val
row = i
col = j
return val,(row,col)
def get_search_distance(self,center,path):
start_point = path[0]
dist = self.get_distance(center,start_point)
#This is the formula for circumference + one radisu
path_dist = (2 * np.pi * dist) + dist
return path_dist
def get_distance(self,p1,p2):
az1 = np.deg2rad(self.rt_data[0,p1[0],p1[1]])
el1 = np.deg2rad(self.rt_data[1,p1[0],p1[1]])
az2 = np.deg2rad(self.rt_data[0,p2[0],p2[1]])
el2 = np.deg2rad(self.rt_data[1,p2[0],p2[1]])
#print(az1,el1,az2,el2)
dist = self.ff_radius * np.sqrt(2) * np.sqrt(1 - np.sin(az1)*np.sin(az2)*np.cos(el1-el2) - np.cos(az1)*np.cos(az2))
return dist
def get_total_raster_distance(self):
shape = self.azimuth.shape
start_point = (int(shape[0]/2),0)
end_point = (int(shape[0]/2),shape[1]-1)
row_dist = self.get_distance(start_point,end_point)
return row_dist*shape[0]
raster_file = "./input/FID1110_07_raster.csv"
rt_data = convert_file2_matrix(raster_file,1300)
signal = rt_data[2,:,:]
area = signal.shape
#DFS search circular
#Class instance
kns = maxima_search(rt_data,(int(area[0]/2),int(area[1]/2)))
max_signal_val,max_signal_pos,dist = kns.find_peak(1,(int(area[0]/4),int(area[1]/4)))
print('Max signal value found:{}'.format(max_signal_val))
print('Location of Max Signal:{}'.format(max_signal_pos))
print('Distance covered for search:{}'.format(dist))
print("Total Raster Distance:{}".format(kns.get_total_raster_distance()))
peak = kns.confirm_maxima()
text_file = open('./output/DFS/DFS_path.txt','w+')
for p in kns.saved_path:
text_file.write(str(p)+'\n')
text_file.close()
x = [p[0] for p in kns.saved_path]
y = [p[1] for p in kns.saved_path]
plt.clf()
plt.plot(x,y)
plt.show()