-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathdemo_play_with_model.py
134 lines (96 loc) · 3.96 KB
/
demo_play_with_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding: utf-8
from __future__ import division, print_function
from nltk.tokenize import word_tokenize
import models
import data
import theano
import sys
import re
from io import open
import theano.tensor as T
import numpy as np
numbers = re.compile(r'\d')
is_number = lambda x: len(numbers.sub('', x)) / len(x) < 0.6
def to_array(arr, dtype=np.int32):
# minibatch of 1 sequence as column
return np.array([arr], dtype=dtype).T
def convert_punctuation_to_readable(punct_token):
if punct_token == data.SPACE:
return ' '
elif punct_token.startswith('-'):
return ' ' + punct_token[0] + ' '
else:
return punct_token[0] + ' '
def punctuate(predict, word_vocabulary, punctuation_vocabulary, reverse_punctuation_vocabulary, reverse_word_vocabulary, words, f_out, show_unk):
if len(words) == 0:
sys.exit("Input text from stdin missing.")
if words[-1] != data.END:
words += [data.END]
i = 0
while True:
subsequence = words[i:i+data.MAX_SEQUENCE_LEN]
if len(subsequence) == 0:
break
converted_subsequence = [word_vocabulary.get(
"<NUM>" if is_number(w) else w.lower(),
word_vocabulary[data.UNK])
for w in subsequence]
if show_unk:
subsequence = [reverse_word_vocabulary[w] for w in converted_subsequence]
y = predict(to_array(converted_subsequence))
f_out.write(subsequence[0].title())
last_eos_idx = 0
punctuations = []
for y_t in y:
p_i = np.argmax(y_t.flatten())
punctuation = reverse_punctuation_vocabulary[p_i]
punctuations.append(punctuation)
if punctuation in data.EOS_TOKENS:
last_eos_idx = len(punctuations) # we intentionally want the index of next element
if subsequence[-1] == data.END:
step = len(subsequence) - 1
elif last_eos_idx != 0:
step = last_eos_idx
else:
step = len(subsequence) - 1
for j in range(step):
current_punctuation = punctuations[j]
f_out.write(convert_punctuation_to_readable(current_punctuation))
if j < step - 1:
if current_punctuation in data.EOS_TOKENS:
f_out.write(subsequence[1+j].title())
else:
f_out.write(subsequence[1+j])
if subsequence[-1] == data.END:
break
i += step
if __name__ == "__main__":
if len(sys.argv) > 1:
model_file = sys.argv[1]
else:
sys.exit("Model file path argument missing")
show_unk = False
if len(sys.argv) > 2:
show_unk = bool(int(sys.argv[2]))
x = T.imatrix('x')
print("Loading model parameters...")
net, _ = models.load(model_file, 1, x)
print("Building model...")
predict = theano.function(inputs=[x], outputs=net.y)
word_vocabulary = net.x_vocabulary
punctuation_vocabulary = net.y_vocabulary
reverse_word_vocabulary = {v:k for k,v in net.x_vocabulary.items()}
reverse_punctuation_vocabulary = {v:k for k,v in net.y_vocabulary.items()}
human_readable_punctuation_vocabulary = [p[0] for p in punctuation_vocabulary if p != data.SPACE]
tokenizer = word_tokenize
untokenizer = lambda text: text.replace(" '", "'").replace(" n't", "n't").replace("can not", "cannot")
with open(sys.stdout.fileno(), 'w', encoding='utf-8', closefd=False) as f_out:
while True:
try:
text = raw_input("\nTEXT: ").decode('utf-8')
except NameError:
text = input("\nTEXT: ")
words = [w for w in untokenizer(' '.join(tokenizer(text))).split()
if w not in punctuation_vocabulary and w not in human_readable_punctuation_vocabulary]
punctuate(predict, word_vocabulary, punctuation_vocabulary, reverse_punctuation_vocabulary, reverse_word_vocabulary, words, f_out, show_unk)
f_out.flush()