forked from stm32-rs/stm32h7xx-hal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathi2c4_bdma.rs
138 lines (108 loc) · 3.4 KB
/
i2c4_bdma.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
//! I2C4 in low power mode.
//!
//!
#![allow(clippy::transmute_ptr_to_ptr)]
#![deny(warnings)]
#![no_std]
#![no_main]
use core::{mem, mem::MaybeUninit};
#[macro_use]
mod utilities;
use stm32h7xx_hal::dma::{
bdma::{BdmaConfig, StreamsTuple},
PeripheralToMemory, Transfer,
};
use stm32h7xx_hal::prelude::*;
use stm32h7xx_hal::{i2c, pac, pac::interrupt, rcc::LowPowerMode};
use cortex_m_rt::entry;
use log::info;
// The BDMA can only interact with SRAM4.
//
// The runtime does not initialise this SRAM bank
#[link_section = ".sram4.buffers"]
static mut BUFFER: MaybeUninit<[u8; 10]> = MaybeUninit::uninit();
#[entry]
fn main() -> ! {
utilities::logger::init();
let cp = cortex_m::Peripherals::take().unwrap();
let dp = pac::Peripherals::take().expect("Cannot take peripherals");
// Run D3 / SRD domain
#[cfg(not(feature = "rm0455"))]
dp.PWR.cpucr.modify(|_, w| w.run_d3().set_bit());
#[cfg(feature = "rm0455")]
dp.PWR.cpucr.modify(|_, w| w.run_srd().set_bit());
let pwr = dp.PWR.constrain();
let pwrcfg = example_power!(pwr).freeze();
// RCC
let rcc = dp.RCC.constrain();
let ccdr = rcc
.sys_ck(200.MHz())
// D3 / SRD domain
.hclk(200.MHz()) // rcc_hclk4
.pclk4(50.MHz()) // rcc_pclk4
.freeze(pwrcfg, &dp.SYSCFG);
// GPIO
let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD);
// Configure the SCL and the SDA pin for our I2C bus
let scl = gpiod.pd12.into_alternate().set_open_drain();
let sda = gpiod.pd13.into_alternate().set_open_drain();
let mut i2c = dp.I2C4.i2c(
(scl, sda),
100.kHz(),
ccdr.peripheral.I2C4.low_power(LowPowerMode::Autonomous),
&ccdr.clocks,
);
// Use RX DMA
i2c.rx_dma(true);
// Listen for the end of i2c transactions
i2c.clear_irq(i2c::Event::Stop);
i2c.listen(i2c::Event::Stop);
unsafe {
cortex_m::peripheral::NVIC::unmask(pac::Interrupt::I2C4_EV);
}
// Setup the DMA transfer on stream 0
#[cfg(not(feature = "rm0455"))]
let streams = StreamsTuple::new(
dp.BDMA,
ccdr.peripheral.BDMA.low_power(LowPowerMode::Autonomous),
);
#[cfg(feature = "rm0455")]
let streams = StreamsTuple::new(
dp.BDMA2,
ccdr.peripheral.BDMA2.low_power(LowPowerMode::Autonomous),
);
let config = BdmaConfig::default().memory_increment(true);
// We need to specify the direction with a type annotation
let mut transfer: Transfer<_, _, PeripheralToMemory, _, _> = Transfer::init(
streams.0,
i2c,
unsafe { &mut BUFFER }, // uninitialised memory
None,
config,
);
transfer.start(|i2c| {
// This closure runs right after enabling the stream
// Issue the first part of an I2C transaction to read data from a
// touchscreen
// Write register index
i2c.write(0xBA >> 1, &[0x41, 0xE4]).unwrap();
// Start a read of 10 bytes
i2c.master_read(0xBA >> 1, 10, i2c::Stop::Automatic);
});
// Enter CStop mode on wfi
let mut scb = cp.SCB;
scb.set_sleepdeep();
loop {
cortex_m::asm::wfi();
}
}
#[interrupt]
fn I2C4_EV() {
info!("I2C transfer complete!");
// Look at BUFFER, which we expect to be initialised
let buffer: &'static mut [u8; 10] = unsafe { mem::transmute(&mut BUFFER) };
assert_eq!(buffer[0], 0xBE);
loop {
cortex_m::asm::nop()
}
}