Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

4 tests fail: TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' #53

Open
yurivict opened this issue Jan 3, 2025 · 0 comments

Comments

@yurivict
Copy link

yurivict commented Jan 3, 2025

========================================================================================= FAILURES ==========================================================================================
__________________________________________________________________________________ solve_ls.test_basic_ls ___________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_basic_ls>

    def test_basic_ls(self):
        np.random.seed(2)
        n = 5
        A = random_psd(n, n)
        B = random_psd(n, n)
        C = - random_psd(n, n)
        M = spa.bmat([[A, B.T], [B, C]], format='csc')
        b = np.random.randn(n + n)
    
        #  import ipdb; ipdb.set_trace()
        m = qdldl.Solver(M)
    
        x_qdldl = m.solve(b)
>       x_scipy = sla.spsolve(M, b)

tests/test_solve_ls.py:32: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8ba19310>
mtx = <10x10 sparse matrix of type '<class 'numpy.float64'>'
        with 100 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
__________________________________________________________________________________ solve_ls.test_scalar_ls __________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_scalar_ls>

    def test_scalar_ls(self):
        M = spa.csc_matrix(np.random.randn(1, 1))
        b = np.random.randn(1)
    
        F = qdldl.Solver(M)
        x_qdldl = F.solve(b)
>       x_scipy = sla.spsolve(M, b)

tests/test_solve_ls.py:43: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8bd48290>
mtx = <1x1 sparse matrix of type '<class 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
___________________________________________________________________________________ solve_ls.test_thread ____________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_thread>

    def test_thread(self):
    
        n = 100
        N = 400
    
        def get_random_ls(n):
            A = random_psd(n, n)
            B = random_psd(n, n)
            C = - random_psd(n, n)
            M = spa.bmat([[A, B.T], [B, C]], format='csc')
            b = np.random.randn(n + n)
            return M, b
    
        ls = [get_random_ls(n) for _ in range(N)]
    
        # Solve in loop with scipy
        res_scipy = []
        for (M, b) in ls:
>           res_scipy.append(sla.spsolve(M, b))

tests/test_solve_ls.py:66: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8c4d8c90>
mtx = <200x200 sparse matrix of type '<class 'numpy.float64'>'
        with 40000 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
___________________________________________________________________________________ solve_ls.test_update ____________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_update>

    def test_update(self):
        n = 5
        A = random_psd(n, n)
        B = random_psd(n, n)
        C = - random_psd(n, n)
        M = spa.bmat([[A, B.T], [B, C]], format='csc')
    
        b = np.random.randn(n + n)
    
        F = qdldl.Solver(M)
    
>       x_first_scipy = sla.spsolve(M, b)

tests/test_solve_ls.py:106: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8c4d8890>
mtx = <10x10 sparse matrix of type '<class 'numpy.float64'>'
        with 100 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
================================================================================== short test summary info ==================================================================================
FAILED tests/test_solve_ls.py::solve_ls::test_basic_ls - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
FAILED tests/test_solve_ls.py::solve_ls::test_scalar_ls - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
FAILED tests/test_solve_ls.py::solve_ls::test_thread - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
FAILED tests/test_solve_ls.py::solve_ls::test_update - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
=============================================================================== 4 failed, 5 passed in 12.28s ================================================================================

Version: 0.1.7.post5
Python-3.11

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant