We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
========================================================================================= FAILURES ========================================================================================== __________________________________________________________________________________ solve_ls.test_basic_ls ___________________________________________________________________________________ self = <tests.test_solve_ls.solve_ls testMethod=test_basic_ls> def test_basic_ls(self): np.random.seed(2) n = 5 A = random_psd(n, n) B = random_psd(n, n) C = - random_psd(n, n) M = spa.bmat([[A, B.T], [B, C]], format='csc') b = np.random.randn(n + n) # import ipdb; ipdb.set_trace() m = qdldl.Solver(M) x_qdldl = m.solve(b) > x_scipy = sla.spsolve(M, b) tests/test_solve_ls.py:32: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec, /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve self.numeric(mtx) /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric self.symbolic(mtx) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8ba19310> mtx = <10x10 sparse matrix of type '<class 'numpy.float64'>' with 100 stored elements in Compressed Sparse Column format> def symbolic(self, mtx): """ Perform symbolic object (symbolic LU decomposition) computation for a given sparsity pattern. """ self.free_symbolic() indx = self._getIndx(mtx) if not assumeSortedIndices: # row/column indices cannot be assumed to be sorted mtx.sort_indices() if self.isReal: status, self._symbolic\ > = self.funs.symbolic(mtx.shape[0], mtx.shape[1], mtx.indptr, indx, mtx.data, self.control, self.info) E TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError __________________________________________________________________________________ solve_ls.test_scalar_ls __________________________________________________________________________________ self = <tests.test_solve_ls.solve_ls testMethod=test_scalar_ls> def test_scalar_ls(self): M = spa.csc_matrix(np.random.randn(1, 1)) b = np.random.randn(1) F = qdldl.Solver(M) x_qdldl = F.solve(b) > x_scipy = sla.spsolve(M, b) tests/test_solve_ls.py:43: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec, /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve self.numeric(mtx) /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric self.symbolic(mtx) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8bd48290> mtx = <1x1 sparse matrix of type '<class 'numpy.float64'>' with 1 stored elements in Compressed Sparse Column format> def symbolic(self, mtx): """ Perform symbolic object (symbolic LU decomposition) computation for a given sparsity pattern. """ self.free_symbolic() indx = self._getIndx(mtx) if not assumeSortedIndices: # row/column indices cannot be assumed to be sorted mtx.sort_indices() if self.isReal: status, self._symbolic\ > = self.funs.symbolic(mtx.shape[0], mtx.shape[1], mtx.indptr, indx, mtx.data, self.control, self.info) E TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError ___________________________________________________________________________________ solve_ls.test_thread ____________________________________________________________________________________ self = <tests.test_solve_ls.solve_ls testMethod=test_thread> def test_thread(self): n = 100 N = 400 def get_random_ls(n): A = random_psd(n, n) B = random_psd(n, n) C = - random_psd(n, n) M = spa.bmat([[A, B.T], [B, C]], format='csc') b = np.random.randn(n + n) return M, b ls = [get_random_ls(n) for _ in range(N)] # Solve in loop with scipy res_scipy = [] for (M, b) in ls: > res_scipy.append(sla.spsolve(M, b)) tests/test_solve_ls.py:66: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec, /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve self.numeric(mtx) /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric self.symbolic(mtx) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8c4d8c90> mtx = <200x200 sparse matrix of type '<class 'numpy.float64'>' with 40000 stored elements in Compressed Sparse Column format> def symbolic(self, mtx): """ Perform symbolic object (symbolic LU decomposition) computation for a given sparsity pattern. """ self.free_symbolic() indx = self._getIndx(mtx) if not assumeSortedIndices: # row/column indices cannot be assumed to be sorted mtx.sort_indices() if self.isReal: status, self._symbolic\ > = self.funs.symbolic(mtx.shape[0], mtx.shape[1], mtx.indptr, indx, mtx.data, self.control, self.info) E TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError ___________________________________________________________________________________ solve_ls.test_update ____________________________________________________________________________________ self = <tests.test_solve_ls.solve_ls testMethod=test_update> def test_update(self): n = 5 A = random_psd(n, n) B = random_psd(n, n) C = - random_psd(n, n) M = spa.bmat([[A, B.T], [B, C]], format='csc') b = np.random.randn(n + n) F = qdldl.Solver(M) > x_first_scipy = sla.spsolve(M, b) tests/test_solve_ls.py:106: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec, /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve self.numeric(mtx) /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric self.symbolic(mtx) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8c4d8890> mtx = <10x10 sparse matrix of type '<class 'numpy.float64'>' with 100 stored elements in Compressed Sparse Column format> def symbolic(self, mtx): """ Perform symbolic object (symbolic LU decomposition) computation for a given sparsity pattern. """ self.free_symbolic() indx = self._getIndx(mtx) if not assumeSortedIndices: # row/column indices cannot be assumed to be sorted mtx.sort_indices() if self.isReal: status, self._symbolic\ > = self.funs.symbolic(mtx.shape[0], mtx.shape[1], mtx.indptr, indx, mtx.data, self.control, self.info) E TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' /usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError ================================================================================== short test summary info ================================================================================== FAILED tests/test_solve_ls.py::solve_ls::test_basic_ls - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' FAILED tests/test_solve_ls.py::solve_ls::test_scalar_ls - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' FAILED tests/test_solve_ls.py::solve_ls::test_thread - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' FAILED tests/test_solve_ls.py::solve_ls::test_update - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' =============================================================================== 4 failed, 5 passed in 12.28s ================================================================================
Version: 0.1.7.post5 Python-3.11
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Version: 0.1.7.post5
Python-3.11
The text was updated successfully, but these errors were encountered: