diff --git a/osqpth/osqpth.py b/osqpth/osqpth.py index 54a8cdf..c070f2e 100644 --- a/osqpth/osqpth.py +++ b/osqpth/osqpth.py @@ -35,14 +35,14 @@ def forward(self, P_val, q_val, A_val, l_val, u_val): \hat x = argmin_x 1/2 x' P x + q' x subject to l <= Ax <= u - + where P \in S^{n,n}, S^{n,n} is the set of all positive semi-definite matrices, q \in R^{n} A \in R^{m,n} l \in R^{m} u \in R^{m} - + These parameters should all be passed to this function as Variable- or Parameter-wrapped Tensors. (See torch.autograd.Variable and torch.nn.parameter.Parameter) @@ -57,7 +57,7 @@ def forward(self, P_val, q_val, A_val, l_val, u_val): that will not change across all of the minibatch examples. This function is able to infer such cases. - If you don't want to use any constraints, you can set the + If you don't want to use any constraints, you can set the appropriate values to: e = Variable(torch.Tensor()) @@ -72,12 +72,12 @@ def forward(self, P_val, q_val, A_val, l_val, u_val): # Convert P and A to sparse matrices # TODO (Bart): create CSC matrix during initialization. Then # just reassign the mat.data vector with A_val and P_val - + if self.n_batch == 1: # Create lists to make the code below work # TODO (Bart): Find a better way to do this P_val, q_val, A_val, l_val, u_val = [P_val], [q_val], [A_val], [l_val], [u_val] - + P = [spa.csc_matrix((to_numpy(P_val[i]), self.P_idx), shape=self.P_shape) for i in range(self.n_batch)] q = [to_numpy(q_val[i]) for i in range(self.n_batch)] @@ -96,6 +96,11 @@ def forward(self, P_val, q_val, A_val, l_val, u_val): m = osqp.OSQP() m.setup(P[i], q[i], A[i], l[i], u[i], verbose=self.verbose) result = m.solve() + status = result.info.status + if status != 'solved': + # TODO: We can replace this with something calmer and + # add some more options around potentially ignoring this. + raise RuntimeError(f"Unable to solve QP, status: {status}") x.append(result.x) y.append(result.y) z.append(A[i].dot(result.x)) @@ -103,14 +108,14 @@ def forward(self, P_val, q_val, A_val, l_val, u_val): # Save stuff for backpropagation self.backward_vars = (P, q, A, l, u, x, y, z) - + # Return solutions return x_torch def backward(self, dl_dx_val): - + Tensor = torch.cuda.DoubleTensor if dl_dx_val.is_cuda else torch.DoubleTensor - + # Convert dl_dx to numpy dl_dx = to_numpy(dl_dx_val).squeeze()