This repository has been archived by the owner on May 31, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimize.py
executable file
·125 lines (108 loc) · 4.36 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
# hill climbing algorithm for determining optimum parameters
import os
import os.path
import sys
import random
import autoindex
import functools
# parameters and their ranges (inclusive) and step
paramdefs = {
'min_block_length': (15,25,1),
'cutoff_frequency': (7,14,1), # divided by 1000
'limit': (8,40,2),
# 'normalize': (0,1,1) # converted to boolean
}
class hashabledict(dict):
def __hash__(self):
return hash(tuple(sorted(self.items())))
def generate_initial_params():
# generate a random set of parameters, respecting the defined ranges
params = hashabledict()
for name,rangedef in paramdefs.items():
minv, maxv, step = rangedef
params[name] = random.randrange(minv, maxv+1, step)
return params
def copy_and_set(d, key, val):
"""return a copy of a dict, with key set to val"""
d2 = hashabledict(d)
d2[key] = val
return d2
def param_str(params):
if params is None:
return '{}'
return '{' + ', '.join(["'%s': %d" % (k, params[k]) for k in sorted(params.keys())]) + '}'
def neighbour_params(params, stepfactor):
neighbours = []
for name,val in params.items():
minv, maxv, step = paramdefs[name]
if val - (step * stepfactor) >= minv:
neighbours.append(copy_and_set(params, name, val - (step * stepfactor)))
if val + (step * stepfactor) <= maxv:
neighbours.append(copy_and_set(params, name, val + (step * stepfactor)))
return neighbours
@functools.lru_cache(maxsize=10000)
def evaluate_document(sentences, goldlabels, name, params):
results = autoindex.autoindex(sentences, **params)
value = 1.0
score = 0.0
for res in results:
if res['label'] in goldlabels:
score += value
value *= 0.9
if score == 0.0:
# tiny incentive for getting at least some results
# to help getting away from "deserts" with zero results
score = 0.00001 * len(results)
# print(name, param_str(params), score)
return score
def evaluate_documents(documents, params):
score = 0.0
for doc in documents:
score += evaluate_document(doc['sentences'], doc['goldlabels'], doc['name'], params)
return score
def optimize(documents):
curparams = bestparams = generate_initial_params()
maxscore = evaluate_documents(documents, curparams)
while True:
stepped = False
for stepfactor in range(1,10+1):
print("current params: %s step: %d score: %s" % (param_str(curparams), stepfactor, str(maxscore)))
print("cache info:", autoindex.search.cache_info(), evaluate_document.cache_info())
for nbparams in neighbour_params(curparams, stepfactor):
score = evaluate_documents(documents, nbparams)
if maxscore is None or score > maxscore:
bestparams = nbparams
print("FOUND params: %s step: %d score: %f" % (param_str(nbparams), stepfactor, score))
print("cache info:", autoindex.search.cache_info(), evaluate_document.cache_info())
maxscore = score
stepped = True
if stepped:
# already found better params, no need to step further
curparams = bestparams
break
if not stepped:
break
return (curparams, maxscore)
if __name__ == '__main__':
testdocdir = sys.argv[1]
documents = []
for goldfile in os.listdir(testdocdir):
if not goldfile.endswith('.gold'):
continue
textfile = goldfile.replace('.gold','.txt')
sentences = tuple(autoindex.split_to_sentences(open(os.path.join(testdocdir, textfile)).read()))
gold = open(os.path.join(testdocdir, goldfile)).readlines()
goldlabels = tuple([label.strip() for label in gold])
documents.append({'sentences': sentences, 'goldlabels': goldlabels, 'name': textfile.replace('.txt','')})
print(goldfile, len(sentences), goldlabels)
bestparams = None
bestscore = 0.0
for i in range(20):
params, score = optimize(documents)
print("*** round %d params: %s score: %f" % (i, param_str(params), score))
print()
if score > bestscore:
bestscore = score
bestparams = params
print("best params: %s score: %f" % (param_str(bestparams), bestscore))