-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha256.c
159 lines (139 loc) · 5.07 KB
/
sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* http://bradconte.com/sha256_c
* This code is released into the public domain free of any restrictions.
* The author requests acknowledgement if the code is used, but does not
* require it. This code is provided free of any liability and without any
* quality claims by the author. */
#include <stdio.h>
#include <string.h>
#define uchar unsigned char // 8-bit byte
#define uint unsigned int // 32-bit word
// DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it
#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - (c)) ++b; a += c;
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
typedef struct {
uchar data[64];
uint datalen;
uint bitlen[2];
uint state[8];
} SHA256_CTX;
uint k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
void sha256_transform(SHA256_CTX *ctx, uchar data[])
{
uint a,b,c,d,e,f,g,h,i,j,t1,t2,m[64];
for (i=0,j=0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j+1] << 16) | (data[j+2] << 8) | (data[j+3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i-2]) + m[i-7] + SIG0(m[i-15]) + m[i-16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen[0] = 0;
ctx->bitlen[1] = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, uchar data[], uint len)
{
uint i;
for (i=0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx,ctx->data);
DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512);
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, uchar hash[])
{
uint i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx,ctx->data);
memset(ctx->data,0,56);
}
// Append to the padding the total message's length in bits and transform.
DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],ctx->datalen * 8);
ctx->data[63] = ctx->bitlen[0];
ctx->data[62] = ctx->bitlen[0] >> 8;
ctx->data[61] = ctx->bitlen[0] >> 16;
ctx->data[60] = ctx->bitlen[0] >> 24;
ctx->data[59] = ctx->bitlen[1];
ctx->data[58] = ctx->bitlen[1] >> 8;
ctx->data[57] = ctx->bitlen[1] >> 16;
ctx->data[56] = ctx->bitlen[1] >> 24;
sha256_transform(ctx,ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i=0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24-i*8)) & 0x000000ff;
hash[i+4] = (ctx->state[1] >> (24-i*8)) & 0x000000ff;
hash[i+8] = (ctx->state[2] >> (24-i*8)) & 0x000000ff;
hash[i+12] = (ctx->state[3] >> (24-i*8)) & 0x000000ff;
hash[i+16] = (ctx->state[4] >> (24-i*8)) & 0x000000ff;
hash[i+20] = (ctx->state[5] >> (24-i*8)) & 0x000000ff;
hash[i+24] = (ctx->state[6] >> (24-i*8)) & 0x000000ff;
hash[i+28] = (ctx->state[7] >> (24-i*8)) & 0x000000ff;
}
}