forked from ArduPilot/pymavlink
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rotmat.py
executable file
·369 lines (311 loc) · 11.8 KB
/
rotmat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#!/usr/bin/env python
#
# vector3 and rotation matrix classes
# This follows the conventions in the ArduPilot code,
# and is essentially a python version of the AP_Math library
#
# Andrew Tridgell, March 2012
#
# This library is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.
#
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
# for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
'''rotation matrix class
'''
from __future__ import print_function
from builtins import range
from builtins import object
from math import sin, cos, sqrt, asin, atan2, pi, radians, acos, degrees
class Vector3(object):
'''a vector'''
def __init__(self, x=None, y=None, z=None):
if x != None and y != None and z != None:
self.x = float(x)
self.y = float(y)
self.z = float(z)
elif x != None and len(x) == 3:
self.x = float(x[0])
self.y = float(x[1])
self.z = float(x[2])
elif x != None:
raise ValueError('bad initialiser')
else:
self.x = float(0)
self.y = float(0)
self.z = float(0)
def __repr__(self):
return 'Vector3(%.2f, %.2f, %.2f)' % (self.x,
self.y,
self.z)
def __eq__(self, v):
return self.x == v.x and self.y == v.y and self.z == v.z
def __ne__(self, v):
return not self == v
def close(self, v, tol=1e-7):
return abs(self.x - v.x) < tol and \
abs(self.y - v.y) < tol and \
abs(self.z - v.z) < tol
def __add__(self, v):
return Vector3(self.x + v.x,
self.y + v.y,
self.z + v.z)
__radd__ = __add__
def __sub__(self, v):
return Vector3(self.x - v.x,
self.y - v.y,
self.z - v.z)
def __neg__(self):
return Vector3(-self.x, -self.y, -self.z)
def __rsub__(self, v):
return Vector3(v.x - self.x,
v.y - self.y,
v.z - self.z)
def __mul__(self, v):
if isinstance(v, Vector3):
'''dot product'''
return self.x*v.x + self.y*v.y + self.z*v.z
return Vector3(self.x * v,
self.y * v,
self.z * v)
__rmul__ = __mul__
def __div__(self, v):
return Vector3(self.x / v,
self.y / v,
self.z / v)
def __mod__(self, v):
'''cross product'''
return Vector3(self.y*v.z - self.z*v.y,
self.z*v.x - self.x*v.z,
self.x*v.y - self.y*v.x)
def __copy__(self):
return Vector3(self.x, self.y, self.z)
copy = __copy__
def length(self):
return sqrt(self.x**2 + self.y**2 + self.z**2)
def zero(self):
self.x = self.y = self.z = 0
def angle(self, v):
'''return the angle between this vector and another vector'''
return acos((self * v) / (self.length() * v.length()))
def normalized(self):
return self.__div__(self.length())
def normalize(self):
v = self.normalized()
self.x = v.x
self.y = v.y
self.z = v.z
class Matrix3(object):
'''a 3x3 matrix, intended as a rotation matrix'''
def __init__(self, a=None, b=None, c=None):
if a is not None and b is not None and c is not None:
self.a = a.copy()
self.b = b.copy()
self.c = c.copy()
else:
self.identity()
def __repr__(self):
return 'Matrix3((%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f))' % (
self.a.x, self.a.y, self.a.z,
self.b.x, self.b.y, self.b.z,
self.c.x, self.c.y, self.c.z)
def identity(self):
self.a = Vector3(1,0,0)
self.b = Vector3(0,1,0)
self.c = Vector3(0,0,1)
def transposed(self):
return Matrix3(Vector3(self.a.x, self.b.x, self.c.x),
Vector3(self.a.y, self.b.y, self.c.y),
Vector3(self.a.z, self.b.z, self.c.z))
def from_euler(self, roll, pitch, yaw):
'''fill the matrix from Euler angles in radians'''
cp = cos(pitch)
sp = sin(pitch)
sr = sin(roll)
cr = cos(roll)
sy = sin(yaw)
cy = cos(yaw)
self.a.x = cp * cy
self.a.y = (sr * sp * cy) - (cr * sy)
self.a.z = (cr * sp * cy) + (sr * sy)
self.b.x = cp * sy
self.b.y = (sr * sp * sy) + (cr * cy)
self.b.z = (cr * sp * sy) - (sr * cy)
self.c.x = -sp
self.c.y = sr * cp
self.c.z = cr * cp
def to_euler(self):
'''find Euler angles (321 convention) for the matrix'''
if self.c.x >= 1.0:
pitch = pi
elif self.c.x <= -1.0:
pitch = -pi
else:
pitch = -asin(self.c.x)
roll = atan2(self.c.y, self.c.z)
yaw = atan2(self.b.x, self.a.x)
return (roll, pitch, yaw)
def to_euler312(self):
'''find Euler angles (312 convention) for the matrix.
See http://www.atacolorado.com/eulersequences.doc
'''
T21 = self.a.y
T22 = self.b.y
T23 = self.c.y
T13 = self.c.x
T33 = self.c.z
yaw = atan2(-T21, T22)
roll = asin(T23)
pitch = atan2(-T13, T33)
return (roll, pitch, yaw)
def from_euler312(self, roll, pitch, yaw):
'''fill the matrix from Euler angles in radians in 312 convention'''
c3 = cos(pitch)
s3 = sin(pitch)
s2 = sin(roll)
c2 = cos(roll)
s1 = sin(yaw)
c1 = cos(yaw)
self.a.x = c1 * c3 - s1 * s2 * s3
self.b.y = c1 * c2
self.c.z = c3 * c2
self.a.y = -c2*s1
self.a.z = s3*c1 + c3*s2*s1
self.b.x = c3*s1 + s3*s2*c1
self.b.z = s1*s3 - s2*c1*c3
self.c.x = -s3*c2
self.c.y = s2
def __add__(self, m):
return Matrix3(self.a + m.a, self.b + m.b, self.c + m.c)
__radd__ = __add__
def __sub__(self, m):
return Matrix3(self.a - m.a, self.b - m.b, self.c - m.c)
def __rsub__(self, m):
return Matrix3(m.a - self.a, m.b - self.b, m.c - self.c)
def __eq__(self, m):
return self.a == m.a and self.b == m.b and self.c == m.c
def __ne__(self, m):
return not self == m
def __mul__(self, other):
if isinstance(other, Vector3):
v = other
return Vector3(self.a.x * v.x + self.a.y * v.y + self.a.z * v.z,
self.b.x * v.x + self.b.y * v.y + self.b.z * v.z,
self.c.x * v.x + self.c.y * v.y + self.c.z * v.z)
elif isinstance(other, Matrix3):
m = other
return Matrix3(Vector3(self.a.x * m.a.x + self.a.y * m.b.x + self.a.z * m.c.x,
self.a.x * m.a.y + self.a.y * m.b.y + self.a.z * m.c.y,
self.a.x * m.a.z + self.a.y * m.b.z + self.a.z * m.c.z),
Vector3(self.b.x * m.a.x + self.b.y * m.b.x + self.b.z * m.c.x,
self.b.x * m.a.y + self.b.y * m.b.y + self.b.z * m.c.y,
self.b.x * m.a.z + self.b.y * m.b.z + self.b.z * m.c.z),
Vector3(self.c.x * m.a.x + self.c.y * m.b.x + self.c.z * m.c.x,
self.c.x * m.a.y + self.c.y * m.b.y + self.c.z * m.c.y,
self.c.x * m.a.z + self.c.y * m.b.z + self.c.z * m.c.z))
v = other
return Matrix3(self.a * v, self.b * v, self.c * v)
def __div__(self, v):
return Matrix3(self.a / v, self.b / v, self.c / v)
def __neg__(self):
return Matrix3(-self.a, -self.b, -self.c)
def __copy__(self):
return Matrix3(self.a, self.b, self.c)
copy = __copy__
def rotate(self, g):
'''rotate the matrix by a given amount on 3 axes,
where g is a vector of delta angles. Used
with DCM updates in mavextra.py'''
temp_matrix = Matrix3()
a = self.a
b = self.b
c = self.c
temp_matrix.a.x = a.y * g.z - a.z * g.y
temp_matrix.a.y = a.z * g.x - a.x * g.z
temp_matrix.a.z = a.x * g.y - a.y * g.x
temp_matrix.b.x = b.y * g.z - b.z * g.y
temp_matrix.b.y = b.z * g.x - b.x * g.z
temp_matrix.b.z = b.x * g.y - b.y * g.x
temp_matrix.c.x = c.y * g.z - c.z * g.y
temp_matrix.c.y = c.z * g.x - c.x * g.z
temp_matrix.c.z = c.x * g.y - c.y * g.x
self.a += temp_matrix.a
self.b += temp_matrix.b
self.c += temp_matrix.c
def normalize(self):
'''re-normalise a rotation matrix'''
error = self.a * self.b
t0 = self.a - (self.b * (0.5 * error))
t1 = self.b - (self.a * (0.5 * error))
t2 = t0 % t1
self.a = t0 * (1.0 / t0.length())
self.b = t1 * (1.0 / t1.length())
self.c = t2 * (1.0 / t2.length())
def trace(self):
'''the trace of the matrix'''
return self.a.x + self.b.y + self.c.z
def from_axis_angle(self, axis, angle):
'''create a rotation matrix from axis and angle'''
ux = axis.x
uy = axis.y
uz = axis.z
ct = cos(angle)
st = sin(angle)
self.a.x = ct + (1-ct) * ux**2
self.a.y = ux*uy*(1-ct) - uz*st
self.a.z = ux*uz*(1-ct) + uy*st
self.b.x = uy*ux*(1-ct) + uz*st
self.b.y = ct + (1-ct) * uy**2
self.b.z = uy*uz*(1-ct) - ux*st
self.c.x = uz*ux*(1-ct) - uy*st
self.c.y = uz*uy*(1-ct) + ux*st
self.c.z = ct + (1-ct) * uz**2
def from_two_vectors(self, vec1, vec2):
'''get a rotation matrix from two vectors.
This returns a rotation matrix which when applied to vec1
will produce a vector pointing in the same direction as vec2'''
angle = vec1.angle(vec2)
cross = vec1 % vec2
if cross.length() == 0:
# the two vectors are colinear
return self.from_euler(0,0,angle)
cross.normalize()
return self.from_axis_angle(cross, angle)
def close(self, m, tol=1e-7):
return self.a.close(m.a, tol) and self.b.close(m.b, tol) and self.c.close(m.c, tol)
class Plane(object):
'''a plane in 3 space, defined by a point and a vector normal'''
def __init__(self, point=None, normal=None):
if point is None:
point = Vector3(0,0,0)
if normal is None:
normal = Vector3(0, 0, 1)
self.point = point
self.normal = normal
class Line(object):
'''a line in 3 space, defined by a point and a vector'''
def __init__(self, point=None, vector=None):
if point is None:
point = Vector3(0,0,0)
if vector is None:
vector = Vector3(0, 0, 1)
self.point = point
self.vector = vector
def plane_intersection(self, plane, forward_only=False):
'''return point where line intersects with a plane'''
l_dot_n = self.vector * plane.normal
if l_dot_n == 0.0:
# line is parallel to the plane
return None
d = ((plane.point - self.point) * plane.normal) / l_dot_n
if forward_only and d < 0:
return None
return (self.vector * d) + self.point